Skip to main content
Log in

Investigating dispersion regimes for effective mass transfer in single-step silica nanofluids for improved CO\(_{2}\) utilization

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Nanofluids are novel colloidal dispersions of particles (size \(\ge 100\) nm) dispersed in base fluids which have widespread industrial applications. However, the suspended particles in the nanofluids are highly prone to agglomeration and sedimentation. Thus, it becomes highly essential to understand the “dispersion regime” inside the nanofluid to ascertain its viability for desired applications. The dispersion regime is the state of particle suspension inside the base fluid and it has not been widely explored in past literature. Hence, in this work, the dispersion regimes inside silica nanofluids synthesized via single-step method have been explored by the simultaneous UV–Vis, CO\(_2\) absorption, electrical conductivity, and viscosity measurements. Unlike past studies, a comprehensive comparative study (with respect to the base fluid) was carried out to denote NP agglomeration and dispersion regimes. The parameters varied were pH (2–12) and salinity (0–4 wt%), and the optimum conditions in which silica nanofluids exhibited a well-dispersed dispersion regime (i.e. negligible NP agglomeration) have been identified. Increasing salinity beyond \(>0.5\) wt% induced agglomeration in the silica nanofluid (evident by the change in dispersion regime). Scanning electron microscope (SEM) images were used to verify the presence of anticipated dispersion regime inside the fluid. Based on these observations, single-step silica nanofluids showed improved heat/mass transfer capacity in the pH range of 7.6–9.4 and salinity \(< 2\) wt% NaCl. At higher salinity (\(> 2\) wt%) and at low pH conditions (denoting an acidic environment), NP agglomeration was severe and use of nanofluid is not recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S.S. Ashrafmansouri, M. Nasr Esfahany, Int. J. Therm. Sci. 82, 84–99 (2014)

    Article  Google Scholar 

  2. K.R. Chaturvedi, T. Sharma, J. Pet. Sci. Eng. 194, 107499 (2020)

    Article  Google Scholar 

  3. R. Saidur, K.Y. Leong, H.A. Mohammad, Renew. Sustain. Energy Rev. 15, 1646–1668 (2011)

    Article  Google Scholar 

  4. W. Cui, Z. Shen, J. Yang, S. Wu, Case Stud. Therm. Eng. 6, 182–193 (2015)

    Article  Google Scholar 

  5. H.R. Seyf, B. Nikaaein, Int. J. Therm. Sci. 58, 36–44 (2012)

    Article  Google Scholar 

  6. K.R. Chaturvedi, R. Kumar, J. Trivedi, J.J. Sheng, T. Sharma, Energy Fuels 32, 12730–12741 (2018)

    Article  Google Scholar 

  7. T. Ramprasad, R. Khanolkar, A.K. Suresh, Ind. Eng. Chem. Res. 58, 7670–7680 (2019)

    Article  Google Scholar 

  8. S. Farzani Tolesorkhi, F. Esmaeilzadeh, M. Riazi, Pet. Res. 3, 370–380 (2018)

    Google Scholar 

  9. I. Gosens, J.A. Post, L.J. de la Fonteyne, E.H. Jansen, J.W. Geus, F.R. Cassee, W.H. de Jong, Part. Fibre Toxicol. 7, 37 (2010)

    Article  Google Scholar 

  10. K.R. Chaturvedi, J. Trivedi, T. Sharma, Energy 197, 117276 (2020)

    Article  Google Scholar 

  11. K.R. Chaturvedi, T. Sharma, J. Pet. Sci. Eng. 196, 107704 (2021)

    Article  Google Scholar 

  12. K.R. Chaturvedi, R. Narukulla, T. Sharma, J. Mol. Liq. 304, 112765 (2020)

    Article  Google Scholar 

  13. S. Al-Anssari, M. Arif, S. Wang, A. Barifcani, S. Iglauer, J. Colloid Interface Sci. 508, 222–229 (2017)

    Article  ADS  Google Scholar 

  14. N. Bouguerra, S. Poncet, S. Elkoun, Int. Commun. Heat Mass Transf. 92, 51–55 (2018)

    Article  Google Scholar 

  15. E.E. Michaelides, J. Non Equilibrium Thermodyn. 38, 1–79 (2013)

    Article  ADS  Google Scholar 

  16. S.H. Kim, W.G. Kim, H.U. Kang, K.M. Jung, Sep. Sci. Technol. 43, 3036–3055 (2008)

    Article  Google Scholar 

  17. S. Al-Anssari, A. Barifcani, A. Keshavarz, S. Iglauer, J. Colloid Interface Sci. 532, 136–142 (2018)

    Article  ADS  Google Scholar 

  18. S. Al-Anssari, Z.U.A. Arain, A. Barifcani, A. Keshavarz, M. Ali, S. Iglauer, Soc. Pet. Eng. Abu Dhabi Int. Pet. Exhib. Conf. (2018)

  19. M. Kaszuba, D. McKnight, M.T. Connah, F.K. McNeil-Watson, U. Nobbmann, J. Nanoparticle Res. 10, 823–829 (2008)

    Article  ADS  Google Scholar 

  20. A.K. Sharma, A.K. Tiwari, A.R. Dixit, Renew. Sustain. Energy Rev. 53, 779–791 (2016)

    Article  Google Scholar 

  21. L. Hendraningrat, S. Li, O. Torsæter, J. Pet. Sci. Eng. 111, 128–138 (2013)

    Article  Google Scholar 

  22. A.J. Worthen, H.G. Bagaria, Y. Chen, S.L. Bryant, C. Huh, K.P. Johnston, J. Colloid Interface Sci. 391, 142–151 (2013)

    Article  ADS  Google Scholar 

  23. B.P. Binks, T.S. Horozov, Angew. Chem. Int. Ed. 44, 3722–3725 (2005)

    Article  Google Scholar 

  24. Y. Zhang, Y. Wang, F. Xue, Y. Wang, B. Ren, L. Zhang, S. Ren, J. Pet. Sci. Eng. 133, 838–850 (2015)

    Article  Google Scholar 

  25. A.H.S. Dehaghani, R. Daneshfar, Pet. Sci. 16, 591–605 (2019)

  26. A.S. Emrani, H.A. Nasr-El-Din, Colloids Surf. A Physicochem. Eng. Asp. 524, 17–27 (2017)

  27. K.R. Chaturvedi, J. Trivedi, T. Sharma, Energy Fuels 33, 5438–5451 (2019)

    Article  Google Scholar 

  28. H. Setia, R. Gupta, R.K. Wanchoo, Mater. Sci. Forum 757, 139–149 (2013)

  29. T. Sharma, S. Iglauer, J.S. Sangwai, Ind. Eng. Chem. Res. 55, 12387–12397 (2016)

    Article  Google Scholar 

  30. A. Haghtalab, M. Mohammadi, Z. Fakhroueian, Fluid Phase Equilib. 392, 33–42 (2015)

    Article  Google Scholar 

  31. E.I. Chereches, A.A. Minea, Nanomaterials 9, 1228 (2019)

    Article  Google Scholar 

  32. R.S. Kumar, T. Sharma, Colloids Surf. A Physicochem. Eng. Asp. 539, 171–183 (2018)

    Article  Google Scholar 

  33. J.C.M. Pires, F.G. Martins, M.C.M. Alvim-Ferraz, M. Simões, Chem. Eng. Res. Des. 89, 1446–1460 (2011)

    Article  Google Scholar 

  34. T.R. Anderson, E. Hawkins, P.D. Jones, Endeavour 40, 178–187 (2016)

    Article  Google Scholar 

  35. J.M. Nordbotten, M.A. Celia, S. Bachu, Transp. Porous Media 58, 339–360 (2005)

    Article  Google Scholar 

  36. M.A. Celia, S. Bachu, J.M. Nordbotten, K.W. Bandilla, Water Resour. Res. 51, 6846–6892 (2015)

    Article  ADS  Google Scholar 

  37. A. Ahmed, I.M. Saaid, A.A. Ahmed, R.M. Pilus, M.K. Baig, Pet. Sci. 17, 722–733 (2020)

    Article  Google Scholar 

  38. S.M. Seyyedsar, S.A. Farzaneh, M. Sohrabi, J. Nat. Gas Sci. Eng. 34, 1205–1214 (2016)

    Article  Google Scholar 

  39. C. Esene, N. Rezaei, A. Aborig, S. Zendehboudi, Fuel 237, 1086–1107 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors most graciously acknowledge the help and facilities extended by Rajiv Gandhi Institute of Petroleum Technology, Jais, Amethi, for the experimental work and analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tushar Sharma.

Ethics declarations

Conflict of interest

Authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaturvedi, K.R., Sharma, T. Investigating dispersion regimes for effective mass transfer in single-step silica nanofluids for improved CO\(_{2}\) utilization. Eur. Phys. J. Spec. Top. 230, 1391–1398 (2021). https://doi.org/10.1140/epjs/s11734-021-00049-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00049-5

Navigation