Skip to main content
Log in

Significance of inclined magnetic field on nano-bioconvection with nonlinear thermal radiation and exponential space based heat source: a sensitivity analysis

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The characteristics of heat transport in nanoliquids under the influence of bio-convection (motile microorganism) have significant applications, since nanoliquids have greater capacity to improve heat transport properties than conventional liquids. With these incredible nanoliquid characteristics, the main objective of current research is to examine the impact of the exponential heat source linked to space and the inclined magnetic force on the nano-bioconvective flow between two turntables. The effect of nonlinear thermal radiation, variable thermal conductivity and viscosity aspects are also considered. The complicated nonlinear problem is treated numerically by using Finite difference method. Optimization procedure implemented via Response surface Methodology for the effective parameters thermophoresis parameter, Hartmann number and radiation parameter on the heat transfer rate. The axial velocity is a dwelling function of the inclined angle of the magnetic field, and the variable viscosity parameter. The temperature profile hikes with an exponential space-related heat source and thermal radiation aspects. Also, the heat transport rate is highly sensitive towards nonlinear thermal radiation parameter compared to the thermophoresis effect and Hartmann number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. U. Choi, J. A. Eastman, No. ANL/MSD/CP-84938, CONF-951135-29, Argonne National Lab., IL United States, (1995)

  2. J. Buongiorno, J. Heat Trans-T ASME. 128, 240 (2006)

    Article  Google Scholar 

  3. M. Sheikholeslami, D.D. Ganji, Powder Technol. 253, 789 (2014)

    Article  Google Scholar 

  4. S. Nadeem, S. Masood, R. Mehmood, M.A. Sadiq, PLoS One 10(6), e0124016 (2015)

    Article  Google Scholar 

  5. Z. Shah, T. Gul, S. Islam, M.A. Khan, E. Bonyah, F. Hussain, M. Ullah, Results Phys. 10, 36 (2018)

    Article  ADS  Google Scholar 

  6. B. Mahanthesh, B.J. Gireesha, I.L. Animasaun, T. Muhammad, N.S. Shashikumar, Phys. Scr. 94(8), 085214 (2019)

    Article  ADS  Google Scholar 

  7. H.T. Basha, R. Sivaraj, A.S. Reddy, A.J. Chamkha, Eur. Phys. J.-Spec.Top. 228(12), 2531 (2019)

    Article  Google Scholar 

  8. A. Kumar, R. Tripathi, R. Singh, G.S. Seth, Indian J. Phys. 94(3), 319 (2020)

    Article  ADS  Google Scholar 

  9. A.V. Kuznetsov, A.A. Avramenko, Int. Commun. Heat Mass. 31(1), 1 (2004)

    Article  Google Scholar 

  10. M.J. Uddin, M.N. Kabir, Y. Alginahi, O.A. Bég, Proc. Inst. Mech. Eng., Part C. 233(19–20), 6910 (2019)

    Article  Google Scholar 

  11. N.A. Amirsom, M.J. Uddin, M.F.M. Basir, A. Ismail, O.A. Beg, A. Kadir, Sains Malays. 48(5), 1137 (2019)

    Article  Google Scholar 

  12. P.S. Kumar, B.J. Gireesha, B. Mahanthesh, A.J. Chamkha, J. Therm. Anal. Calorim. 136(5), 1947 (2019)

    Article  Google Scholar 

  13. L. Zhang, M.B. Arain, M.M. Bhatti, A. Zeeshan, H. Hal-Sulami, H. Appl. Math. Mech-Engl. 41(4), 637 (2020)

    Article  Google Scholar 

  14. J.C. Umavathi, O. Ojjela, Int. J. Heat Mass Transf. 84, 1 (2015)

    Article  Google Scholar 

  15. D. Mythili, R. Sivaraj, J. Mol. Liq. 216, 466–475 (2016)

    Article  Google Scholar 

  16. B.J. Gireesha, P.S. Kumar, B. Mahanthesh, S.A. Shehzad, F.M. Abbasi, Microgravity Sci. Tec. 30(3), 257 (2018)

    Article  ADS  Google Scholar 

  17. R. Sivaraj, A.J. Benazir, S. Srinivas, A.J. Chamkha, Eur. Phys. J.-Spec. Top. 228(1), 35–53 (2019)

    Article  Google Scholar 

  18. S.K. Mondal, D. Pal, J. Comput. Des. Eng. 7(2), 251 (2020)

    Google Scholar 

  19. K.M. Shirvan, M. Mamourian, S. Mirzakhanlari, R. Ellahi, J. Mol. Liq. 220, 888–901 (2016)

    Article  Google Scholar 

  20. M. Akbarzadeh, S. Rashidi, M. Bovand, R. Ellahi, J. Mol. Liq. 220, 1 (2016)

    Article  Google Scholar 

  21. S.M. Vahedi, A.H. Pordanjani, A. Raisi, A.J. Chamkha, Eur. Phys. J. Plus. 134(3), 124 (2019)

    Article  Google Scholar 

  22. K. Thriveni, B. Mahanthesh, Eur. Phys. J. Plus. 135, 459 (2020)

    Article  Google Scholar 

  23. S. Xun, J. Zhao, L. Zheng, X. Zhang, Int. J. Heat Mass Transf. 111, 1001 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their sincere thanks to the Management, CHRIST (Deemed to be University), Bangalore, India for their support to complete this research work. Also, special thanks to the editor and anonymous reviewers for their constructive suggestions

Author information

Authors and Affiliations

Authors

Contributions

BM: Mathematical formulation, solution, proof reading. KT: Formulation, computing the solution, technical writing.

Corresponding author

Correspondence to B. Mahanthesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahanthesh, B., Thriveni, K. Significance of inclined magnetic field on nano-bioconvection with nonlinear thermal radiation and exponential space based heat source: a sensitivity analysis. Eur. Phys. J. Spec. Top. 230, 1487–1501 (2021). https://doi.org/10.1140/epjs/s11734-021-00045-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00045-9

Navigation