Skip to main content
Log in

Intimation of Gravitational Body Forces in Magnetized Transport of Bio-Nanofluid Flow with Bioconvection and Variable Viscosity

  • ORIGINAL CONTRIBUTION
  • Published:
Journal of The Institution of Engineers (India): Series E Aims and scope Submit manuscript

Abstract

On account of technological and industrial applications, nanofluids are more realistic to boost heat transfer as compared to simple fluids. Therefore, the contemporary mathematical study offers a theoretical analysis regarding incompressible, time-independent electrical magnetohydrodynamic nanofluid flow over a vertical stretching surface. In addition, the influence of convective boundary conditions along with gravitational body forces is considered. To explore the performance of the nanofluid with a viscosity variable for different bodily impacts, we deliberated Brownian motion and thermophoresis parameters in the flow. A well-known shooting technique was implemented to numerically solve the nonlinear system of governing equations. Throughout, the significance of emerging parameters like bioconvection parameter, Peclet number thermophoresis, Lewis numbers, Brownian motion, Prandtl number, magnetic parameter and Schmidt number is elucidated via plots, whereas the division of numerous appreciated physical measures like local Nusselt number, coefficient of skin friction, local Sherwood number and local density of the motile microorganisms is also tabulated. The core finding of the current study is that it helps to control the rate at which heat is transported as well as fluid speed in any industrial applications to make wanted nature of the eventual outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

Data will be available on request.

Abbreviations

BVP:

Boundary value problem

IVP:

Initial value problem

MHD:

Magnetohydrodynamics

ODEs:

Ordinary differential equations

PDEs:

Partial differential equation

\(M\) :

Harman number

\(\lambda\) :

Variable viscosity

\(Pr\) :

Prandtl number

\({R}_{ex}\) :

Local Reynolds number

\(\delta\) :

Swimming microorganism intensity variation parameter

\(Nt\) :

Thermophoresis parameter

\(Lb\) :

Bioconvection Lewis number

\({B}_{T}\) :

Local concentration Grashof number

\(Nb\) :

Brownian motion parameter

\(Sc\) :

Schmidt number

\(Gr\) :

Thermal Grashof numbers

\(Br\) :

Concentration Grashof numbers

\(Pe\) :

Peclet number

\({G}_{T}\) :

Local thermal Grashof number

\((u,v)\) :

Components of velocity

References

  1. S.U. Choi, J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135–29). Argonne National Lab (ANL), Argonne (1995)

  2. Buongiorno, J. (2006). Convective transport in nanofluids. 240–250.

  3. W.A. Khan, I. Pop, Boundary-layer flow of a nanofluid past a stretching sheet. Int. J. Heat Mass Transf. 53(11–12), 2477–2483 (2010)

    Article  Google Scholar 

  4. R.K. Tiwari, M.K. Das, Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. Int. J. Heat Mass Transf. 50(9–10), 2002–2018 (2007)

    Article  Google Scholar 

  5. N.S. Khashi’ie, N.M. Arifin, R. Nazar, E.H. Hafidzuddin, N. Wahi, I. Pop, Magnetohydrodynamics (MHD) axisymmetric flow and heat transfer of a hybrid nanofluid past a radially permeable stretching/shrinking sheet with Joule heating. Chin. J. Phys. 64, 251–263 (2020)

    Article  MathSciNet  Google Scholar 

  6. A. Shafiq, I. Khan, G. Rasool, A.H. Seikh, E.S.M. Sherif, Significance of double stratification in stagnation point flow of third-grade fluid towards a radiative stretching cylinder. Mathematics 7(11), 1103 (2019)

    Article  Google Scholar 

  7. N. Abbas, S. Nadeem, M.Y. Malik, Theoretical study of micropolar hybrid nanofluid over Riga channel with slip conditions. Physica A 551, 124083 (2020)

    Article  MathSciNet  Google Scholar 

  8. M.A. Mansour, A.M. Rashad, B. Mallikarjuna, A.K. Hussein, M. Aichouni, L. Kolsi, MHD mixed bioconvection in a square porous cavity filled by gyrotactic microorganisms. Int. J. Heat Technol. 37(2), 433–445 (2019)

    Article  Google Scholar 

  9. L. Kolsi, A. Abidi, M.N. Borjini, N. Daous, H. Ben Aïssia, Effect of an external magnetic field on the 3-D unsteady natural convection in a cubical enclosure. Num. Heat Transf. Part A Appl. 51(10), 1003–1021 (2007)

    Article  Google Scholar 

  10. R.K. Sharma, A. Bisht, Effect of buoyancy and suction on Sisko nanofluid over a vertical stretching sheet in a porous medium with mass flux condition. Indian J. Pure Appl. Phys. IJPAP 58(3), 178–188 (2020)

    Google Scholar 

  11. L.J. Crane, Flow past a stretching plate, Zeitschrift für angewandte Mathematik und Physik. ZAMP 21(4), 645–647 (1970)

    Google Scholar 

  12. M. Rezayeenik, M. Mousavi-Kamazani, S. Zinatloo-Ajabshir, CeVO4/rGO nanocomposite: facile hydrothermal synthesis, characterization, and electrochemical hydrogen storage. Appl. Phys. A 129(1), 47 (2023)

    Article  Google Scholar 

  13. M.H. Esfahani, S. Zinatloo-Ajabshir, H. Naji, C.A. Marjerrison, J.E. Greedan, M. Behzad, Structural characterization, phase analysis and electrochemical hydrogen storage studies on new pyrochlore SmRETi2O7 (RE= Dy, Ho, and Yb) microstructures. Ceram. Int. 49(1), 253–263 (2023)

    Article  Google Scholar 

  14. S. Zinatloo-Ajabshir, M.S. Morassaei, M. Salavati-Niasari, Eco-friendly synthesis of Nd2Sn2O7–based nanostructure materials using grape juice as green fuel as photocatalyst for the degradation of erythrosine. Compos. B Eng. 167, 643–653 (2019)

    Article  Google Scholar 

  15. S. Zinatloo-Ajabshir, S.A. Heidari-Asil, M. Salavati-Niasari, Simple and eco-friendly synthesis of recoverable zinc cobalt oxide-based ceramic nanostructure as high-performance photocatalyst for enhanced photocatalytic removal of organic contamination under solar light. Sep. Purif. Technol. 267, 118667 (2021)

    Article  Google Scholar 

  16. S. Zinatloo-Ajabshir, Z. Salehi, O. Amiri, M. Salavati-Niasari, Green synthesis, characterization and investigation of the electrochemical hydrogen storage properties of Dy2Ce2O7 nanostructures with fig extract. Int. J. Hydrogen Energy 44(36), 20110–20120 (2019)

    Article  Google Scholar 

  17. M. Jawad, M.K. Hameed, K.S. Nisar, A.H. Majeed, Darcy-Forchheimer flow of maxwell nanofluid flow over a porous stretching sheet with Arrhenius activation energy and nield boundary conditions. Case Stud. Thermal Eng. 89, 102830 (2023)

    Article  Google Scholar 

  18. M. Jawad, Insinuation of arrhenius energy and solar radiation on electrical conducting williamson nano fluids flow with swimming microorganism: completion of buongiorno’s model. East Eur. J. Phys. 1, 135–145 (2023)

    Article  Google Scholar 

  19. M. Jawad, F. Mebarek-Oudina, H. Vaidya, P. Prashar, Influence of bioconvection and thermal radiation on MHD Williamson nano Casson fluid flow with the swimming of gyrotactic microorganisms due to porous stretching sheet. J. Nanofluids 11(4), 500–509 (2022)

    Article  Google Scholar 

  20. M. Jawad, M.K. Hameed, A. Majeed, K.S. Nisar, Arrhenius energy and heat transport activates effect on gyrotactic microorganism flowing in maxwell bio-nanofluid with nield boundary conditions. Case Stud. Thermal Eng. 41, 102574 (2023)

    Article  Google Scholar 

  21. M. Jawad, K. Shehzad, R. Safdar, Novel computational study on MHD flow of nanofluid flow with gyrotactic microorganism due to porous stretching sheet. Punjab Univ. J. Math. 52(12), 5965625 (2021)

    MathSciNet  Google Scholar 

  22. A. Tulu, W. Ibrahim, Effects of second-order slip flow and variable viscosity on natural convection flow of (CNTs-Fe3O4)/Water Hybrid nanofluids due to stretching surface. Math. Probl. Eng. 2021, 1–18 (2021)

    Article  Google Scholar 

  23. S.A. Shehzad, T. Hayat, A. Alsaedi, Influence of convective heat and mass conditions in MHD flow of nanofluid. Bull. Polish Acad. Sci. Tech. Sci. 63(2), 465–474 (2015)

    Google Scholar 

  24. T. Hayat, M. Rashid, M. Imtiaz, A. Alsaedi, Magnetohydrodynamic (MHD) stretched flow of nanofluid with power-law velocity and chemical reaction. AIP Adv. 5(11), 117121 (2015)

    Article  Google Scholar 

  25. N.A. Khan, S. Aziz, N.A. Khan, Numerical simulation for the unsteady MHD flow and heat transfer of couple stress fluid over a rotating disk. PLoS ONE 9(5), e95423 (2014)

    Article  Google Scholar 

  26. T. Hayat, T. Abbas, M. Ayub, T. Muhammad, A. Alsaedi, On squeezed flow of Jeffrey nanofluid between two parallel disks. Appl. Sci. 6(11), 346 (2016)

    Article  Google Scholar 

  27. B. Bin-Mohsin, Buoyancy effects on MHD transport of Nanofluid over a stretching surface with variable viscosity. IEEE Access 7, 75398–75406 (2019)

    Article  Google Scholar 

  28. R. Safdar, M. Jawad, S. Hussain, M. Imran, A. Akgül, W. Jamshed, Thermal radiative mixed convection flow of MHD Maxwell nanofluid: implementation of Buongiorno’s model. Chin. J. Phys. 77, 1465–1478 (2022)

    Article  MathSciNet  Google Scholar 

  29. R. Safdar, I. Gulzar, M. Jawad, W. Jamshed, F. Shahzad, M.R. Eid, Buoyancy force and Arrhenius energy impacts on Buongiorno electromagnetic nanofluid flow containing gyrotactic microorganism. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 236(17), 9459–9471 (2022)

    Article  Google Scholar 

  30. A. Majeed, A. Zeeshan, M. Jawad, Double stratification impact on radiative MHD flow of nanofluid toward a stretchable cylinder under thermophoresis and brownian motion with multiple slip. Int. J. Modern Phys. B 23, 2350232 (2023)

    Article  Google Scholar 

  31. A. Majeed, A. Zeeshan, M. Jawad, M.S. Alhodaly, Influence of melting heat transfer and chemical reaction on the flow of non-Newtonian nanofluid with Brownian motion: Advancement in mechanical engineering. Proc. Instit. Mech. Eng. Part E J. Process Mech. Eng. 56, 09544089221145527 (2022)

    Google Scholar 

  32. A.B. Disu, M.S. Dada, Reynold’s model viscosity on radiative MHD flow in a porous medium between two vertical wavy walls. J. Taibah Univ. Sci. 11(4), 548–565 (2015)

    Article  Google Scholar 

  33. T. Sajid, W. Jamshed, F. Shahzad, M.R. Eid, H.M. Alshehri, M. Goodarzi, K.S. Nisar, Micropolar fluid past a convectively heated surface embedded with nth order chemical reaction and heat source/sink. Phys. Scr.. Scr. 96(10), 104010 (2021)

    Article  Google Scholar 

  34. F. Shaik, S.S.R. Al Siyabi, N. Mohammed, M. Eltayeb, Assessment of ground and surface water quality and its contamination. Int. J. Environ. Anal. Chem. 103(6), 1449–1467 (2023)

    Article  Google Scholar 

  35. M.A. Syed, Z.S. Al-Shukaili, F. Shaik, N. Mohammed, Development and characterization of algae based semi-interpenetrating polymer network composite. Arab. J. Sci. Eng. 47(5), 5661–5669 (2022)

    Article  Google Scholar 

  36. F. Shaik, Testing an aerobic fluidized biofilm process to treat intermittent flows of oil polluted wastewater. J. Eng. Res. 10(2A), 28–38 (2022)

    MathSciNet  Google Scholar 

  37. M. Jawad, A.H. Majeed, K.S. Nisar, M.B.B. Hamida, A. Alasiri, A.M. Hassan, S.W. Sharshir, Numerical simulation of chemically reacting Darcy-Forchheimer flow of Buongiorno Maxwell fluid with Arrhenius energy in the appearance of nanoparticles. Case Stud. Thermal Eng. 145, 103413 (2023)

    Article  Google Scholar 

  38. M. Jawad, K.S. Nisar, Upper-convected flow of Maxwell fluid near stagnation point through porous surface using Cattaneo-Christov heat flux model. Case Studies in Thermal Engineering 12, 103155 (2023)

    Article  Google Scholar 

  39. Jawad, M., Hussain, S., Mebarek-Oudina, F., & Shehzad, K. (2024). Insinuation of Radiative Bio-Convective MHD Flow of Casson nanofluid with Activation Energy and Swimming Microorganisms. In Mathematical Modelling of Fluid Dynamics and Nanofluids (CRC Press, pp. 343–362).

  40. M. Jawad, M. Alam, K.S. Nisar, Investigation of thermal radiative tangent hyperbolic nanofluid flow due to stretched sheet. East Eur. J. Phys. 3, 233–239 (2023)

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

M.J. and M.S. prepared and reviewed the manuscript. All authors are equally contributed.

Corresponding author

Correspondence to Muhammad Jawad.

Ethics declarations

Conflict of interests

 The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval and consent to participate

The research does not involve any animal trial or case studies; therefore, ethical approval is not applicable. The research does not involve any human subjects; therefore, consent to participate is not applicable.

Consent for publication

All the authors provide consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jawad, M., Sajid, M. Intimation of Gravitational Body Forces in Magnetized Transport of Bio-Nanofluid Flow with Bioconvection and Variable Viscosity. J. Inst. Eng. India Ser. E 104, 223–235 (2023). https://doi.org/10.1007/s40034-023-00280-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40034-023-00280-w

Keywords

Navigation