Skip to main content
Log in

Influence of isoflux boundary condition on forced convection due to arbitrary orientation of magnetohydrodynamic flow in cylindrical geometry

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The impact of the isoflux boundary condition on forced convection magnetohydrodynamic flow past a cylinder subjected to an arbitrarily oriented external magnetic field is examined numerically. A fourth-order compact finite difference scheme is developed using cylindrical geometry to discretize the governing Navier–Stokes transport equation together with the energy equation and subsequently solve it utilizing the pseudo-time iterative technique. The flow and heat transfer properties are demonstrated with respect to the parameters such as Reynolds number (\({\text{Re}}\)), interaction parameter (M), magnetic inclination angle (\(\alpha \)) and Prandtl number (\(\text {Pr}\)). The magnitude of the local Nusselt number and surface pressure behave non-monotonically with increasing M for streamwise magnetic field (\(\alpha = 0^\circ \)). Conversely, for other magnetic angles (\(\alpha \ne 0^\circ \)), both the values display a monotonic trend on the cylinder surface. The critical interaction parameter (\(M_{\rm cr}\)) for the mean Nusselt number (\({\overline{\text {Nu}}}\)) is determined in case of the streamwise magnetic field. A non-monotonic behavior in the \(M_{\rm cr}\) values is observed depending upon the values of \(\text {Pr}\) and \({\text{Re}}\). The heat transfer under the isoflux boundary condition is significantly enhanced throughout the cylinder surface when compared to the isothermal boundary condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data Availability Statement

No data are associated in the manuscript.

Abbreviations

\(C_{\rm dv},C_{\rm dp},C_D\) :

Coefficient of viscous, pressure and total drag

\(C_{\rm p}\) :

Surface pressure

\(c_{\rm p}\) :

Fluid specific heat capacity (\(\text{J}\,\text{kg}^{-1}\text{K}^{-1}\))

d :

Diameter of cylinder (m)

\({\mathcal {H}}_{\infty }\) :

Uniform magnetic field (\(\mathrm{wb\,m}^{-2}\))

M :

Interaction parameter

\(M_{\rm cr}\) :

Critical interaction parameter

\(\text {Nu}\) :

Local Nusselt number

\({\overline{\text {Nu}}}\) :

Average/mean Nusselt number

p :

Non-dimensional pressure

\(\text {Pr}\) :

Prandtl number

\((r,\theta )\) :

Cylindrical polar co-ordinates

\({\text{Re}}\) :

Reynolds number

T :

Non-dimensional temperature (K)

\(U_{\infty }\) :

Uniform velocity of fluid (\(\text {ms}^{-1}\))

\({\mathcal {V}}_r\) :

Radial velocity components

\({\mathcal {V}}_\theta \) :

Angular velocity components

\(\alpha \) :

Magnetic inclination angle

\(\beta \) :

Volumetric thermal coefficient (\(\text {K}^{-1}\))

\(\Theta \) :

Temperature (K)

\(\lambda \) :

Thermal diffusivity (\(\text {s}^{-1}\text {m}^2\))

\(\nu \) :

Kinematic viscosity (\(\text {m}^2\text {s}^{-1}\))

\((\xi , \eta )\) :

Modified coordinates (\(r=\text {e}^{\pi \xi }, \theta =\pi \eta \))

\(\rho \) :

Density of fluid (\(\text {kg}\,\text {m}^{-3}\))

\(\sigma \) :

Electrical conductivity (\(\text {S}\, \text {m}^{-1}\))

\(\psi \) :

Non-dimensional stream function

\(\omega \) :

Non-dimensional vorticity function

\(\text{cr}\) :

Critical value

D :

Total drag

dpdv :

Pressure and viscous drag

s :

Surface of cylinder

\(\theta \) :

Angular component

\(\infty \) :

Free stream

\('\) :

Dimensional parameter

References

  1. R.J. Moreau, Magnetohydrodynamics, vol. 3 (Springer, Berlin, 1990)

    Google Scholar 

  2. T. Alboussiere, J. Garandet et al., Buoyancy-driven convection with a uniform magnetic field. Part 1. Asymptotic analysis. J. Fluid Mech. 253, 545–563 (1993)

    Article  ADS  Google Scholar 

  3. U. Müller, L. Bühler, Magnetofluiddynamics in Channels and Containers (Springer, Berlin, 2001)

    Book  Google Scholar 

  4. P. Yu, J. Qiu, Q. Qin, Z.F. Tian, Numerical investigation of natural convection in a rectangular cavity under different directions of uniform magnetic field. Int. J. Heat Mass Transf. 67, 1131–1144 (2013)

    Article  Google Scholar 

  5. D. Chatterjee, S.K. Gupta, MHD flow and heat transfer behind a square cylinder in a duct under strong axial magnetic field. Int. J. Heat Mass Transf. 88, 1–13 (2015)

    Article  Google Scholar 

  6. C. Naldi, E. Zanchini, Comparison of isothermal and isoflux g-functions for borehole-heat-exchanger fields. J. Phys. Conf. Ser. 1224, 012026 (2019)

    Article  Google Scholar 

  7. B.K. Swain, G. Dash, The stability of the MHD flow over a shrinking cylinder with surface heat flux and volumetric thermal power. Int. J. Modern Phys. C (IJMPC) 35(04), 1–14 (2024)

    Google Scholar 

  8. T.Y. Wang, C. Kleinstreuer, Local skin friction and heat transfer in combined free-forced convection from a cylinder or sphere to a power-law fluid. Int. J. Heat Fluid Flow 9(2), 182–187 (1988)

    Article  Google Scholar 

  9. W. Chester, The effect of a magnetic field on stokes flow in a conducting fluid. J. Fluid Mech. 3(3), 304–308 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  10. H. Yosinobu, T. Kakutani, Two-dimensional stokes flow of an electrically conducting fluid in a uniform magnetic field. J. Phys. Soc. Jpn. 14(10), 1433–1444 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  11. Y. Takaisi, Wall-effect upon two-dimensional stokes flow of an electrically conducting liquid in a uniform magnetic field. J. Phys. Soc. Jpn. 15(10), 1876–1885 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  12. K. Tamada, Flow of a slightly conducting fluid past a circular cylinder with strong, aligned magnetic field. Phys. Fluids 5(7), 817–823 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  13. S. Leibovich, Magnetohydrodynamic flow at a rear stagnation point. J. Fluid Mech. 29(2), 401–413 (1967)

    Article  ADS  Google Scholar 

  14. J. Buckmaster, Separation and magnetohydrodynamics. J. Fluid Mech. 38(3), 481–498 (1969)

    Article  ADS  Google Scholar 

  15. M. Savage, Magnetohydrodynamic slow flow past a cylinder. Int. J. Eng. Sci. 10(2), 155–158 (1972)

    Article  Google Scholar 

  16. J. Bramley, Magnetohydrodynamic flow past a circular cylinder. Zeitschrift für angewandte Mathematik und Physik ZAMP 25(3), 409–416 (1974)

    Article  ADS  Google Scholar 

  17. J. Bramley, Magnetohydrodynamic flow past a circular cylinder. II. Zeitschrift für angewandte Mathematik und Physik ZAMP 26(2), 203–209 (1975)

    Article  ADS  Google Scholar 

  18. S. Swarup, P. Sinha, Magnetohydrodynamic flow past a circular cylinder. Z. Angew. Math. Phys. 28, 73–83 (1977)

    Article  Google Scholar 

  19. J. Lahjomri, P. Capéran, A. Alemany, The cylinder wake in a magnetic field aligned with the velocity. J. Fluid Mech. 253, 421–448 (1993)

    Article  ADS  Google Scholar 

  20. J. Josserand, P. Marty, A. Alemany, Pressure and drag measurements on a cylinder in a liquid metal flow with an aligned magnetic field. Fluid Dyn. Res. 11(3), 107 (1993)

    Article  ADS  Google Scholar 

  21. G. Mutschke, G. Gerbeth, V. Shatrov, A. Tomboulides, Two and three-dimensional instabilities of the cylinder wake in an aligned magnetic field. Phys. Fluids 9(11), 3114–3116 (1997)

    Article  ADS  Google Scholar 

  22. V. Shatrov, G. Mutschke, G. Gerbeth, Numerical simulation of the two-dimensional flow around a circular cylinder. Magnetohydrodynamics 33(1), 2–10 (1997)

    Google Scholar 

  23. T.W. Berger, J. Kim, C. Lee, J. Lim, Turbulent boundary layer control utilizing the Lorentz force. Phys. Fluids 12(3), 631–649 (2000)

    Article  ADS  Google Scholar 

  24. T.V.S. Sekhar, R. Sivakumar, H. Kumar, Effect of aligned magnetic field on the steady viscous flow past a circular cylinder. Appl. Math. Model. 31(1), 130–139 (2007)

    Article  Google Scholar 

  25. T.V.S. Sekhar, R. Sivakumar, T.V.R. Ravi Kumar, Effect of magnetic Reynolds number on the two-dimensional hydromagnetic flow around a cylinder. Int. J. Numer. Methods Fluids 59(12), 1351–1368 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  26. D. Grigoriadis, I. Sarris, S.C. Kassinos, MHD flow past a circular cylinder using the immersed boundary method. Comput. Fluids 39(2), 345–358 (2010)

    Article  Google Scholar 

  27. P. Yu, Z. Tian, Comparison of the simplified and full MHD models for laminar incompressible flow past a circular cylinder. Appl. Math. Model. 41, 143–163 (2017)

    Article  MathSciNet  Google Scholar 

  28. J.H. Pan, M.J. Ni, N.M. Zhang, A consistent and conservative immersed boundary method for MHD flows and moving boundary problems. J. Comput. Phys. 373, 425–445 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  29. J. Cole, Heat Transfer from Wires at Reynolds Numbers in the Oseen Range (Heat Transfer Transfer & Fluid Mechanics Inst, University of California, Los Angeles, 1954)

    Google Scholar 

  30. S.C.R. Dennis, J. Hudson, N. Smith, Steady laminar forced convection from a circular cylinder at low Reynolds numbers. Phys. Fluids 11(5), 933–940 (1968)

    Article  ADS  Google Scholar 

  31. C. Hieber, B. Gebhart, Low Reynolds number heat transfer from a circular cylinder. J. Fluid Mech. 32(1), 21–28 (1968)

    Article  ADS  Google Scholar 

  32. H. Jafroudi, H. Yang, Steady laminar forced convection from a circular cylinder. J. Comput. Phys. 65(1), 46–56 (1986)

    Article  ADS  Google Scholar 

  33. C.F. Lange, F. Durst, M. Breuer, Momentum and heat transfer from cylinders in laminar crossflow at \(10^{-4} \le Re \le 200\). Int. J. Heat Mass Transf. 41(22), 3409–3430 (1998)

    Article  Google Scholar 

  34. V.N. Kurdyumov, E. Fernandez, Heat transfer from a circular cylinder at low Reynolds numbers. J. Heat Transf. 120(1), 72–75 (1998)

    Article  Google Scholar 

  35. L. Baranyi, Computation of unsteady momentum and heat transfer from a fixed circular cylinder in laminar flow. J. Comput. Appl. Mech. 4(1), 13–25 (2003)

    MathSciNet  Google Scholar 

  36. G. Juncu, Unsteady conjugate heat/mass transfer from a circular cylinder in laminar crossflow at low Reynolds numbers. Int. J. Heat Mass Transf. 47(10–11), 2469–2480 (2004)

    Article  Google Scholar 

  37. D. Chatterjee, B. Mondal, Effect of thermal buoyancy on the two-dimensional upward flow and heat transfer around a square cylinder. Heat Transf. Eng. 33(12), 1063–1074 (2012)

    Article  ADS  Google Scholar 

  38. F. Ahmed, M. Iqbal, N. Sher Akbar, Numerical study of forced convective power law fluid flow through an annulus sector duct. Eur. Phys. J. Plus 131(9), 341 (2016)

    Article  Google Scholar 

  39. A. Sochinskii, D. Colombet, M.M. Munoz, F. Ayela, N. Luchier, Flow and heat transfer around a diamond-shaped cylinder at moderate Reynolds number. Int. J. Heat Mass Transf. 142, 118435 (2019)

    Article  Google Scholar 

  40. N.C. Roy, M.A. Hossain, R.S.R. Gorla, Free and forced convection flow past a cylinder with slip boundary conditions. Commun. Numer. Anal. 1, 1–20 (2019)

    MathSciNet  Google Scholar 

  41. S. Sarkar, C. Mondal, N.K. Manna, S.K. Saha, Forced convection past a semi-circular cylinder at incidence with a downstream circular cylinder: thermofluidic transport and stability analysis. Phys. Fluids 33(2), 023603 (2021)

    Article  ADS  Google Scholar 

  42. B. Wu, C. Shu, M. Wan, An implicit immersed boundary method for Robin boundary condition. Int. J. Mech. Sci. 261, 108694 (2024)

    Article  Google Scholar 

  43. R. Gardner, P. Lykoudis, Magneto-fluid-mechanic pipe flow in a transverse magnetic field. Part 1. Isothermal flow. J. Fluid Mech. 47(4), 737–764 (1971)

    Article  ADS  Google Scholar 

  44. T. Aldos, Y. Ali, MHD free forced convection from a horizontal cylinder with suction and blowing. Int. Commun. Heat Mass Transf. 24(5), 683–693 (1997)

    Article  Google Scholar 

  45. M. Sathiyamoorthy, A. Chamkha, Effect of magnetic field on natural convection flow in a liquid gallium filled square cavity for linearly heated side wall (s). Int. J. Therm. Sci. 49(9), 1856–1865 (2010)

    Article  Google Scholar 

  46. D. Chatterjee, K. Chatterjee, Wall-bounded flow and heat transfer around a circular cylinder at low Reynolds and Hartmann numbers. Heat Transf.-Asian Res. 42(2), 133–150 (2013)

    Article  Google Scholar 

  47. H.R. Ashorynejad, A.A. Mohamad, M. Sheikholeslami, Magnetic field effects on natural convection flow of a nanofluid in a horizontal cylindrical annulus using Lattice Boltzmann method. Int. J. Therm. Sci. 64, 240–250 (2013)

    Article  Google Scholar 

  48. S. Kakarantzas, L.T. Benos, I. Sarris, B. Knaepen, A. Grecos, N. Vlachos, MHD liquid metal flow and heat transfer between vertical coaxial cylinders under horizontal magnetic field. Int. J. Heat Fluid Flow 65, 342–351 (2017)

    Article  Google Scholar 

  49. H. Yoon, H. Chun, M. Ha, H. Lee, A numerical study on the fluid flow and heat transfer around a circular cylinder in an aligned magnetic field. Int. J. Heat Mass Transf. 47(19–20), 4075–4087 (2004)

    Article  Google Scholar 

  50. R. Sivakumar, S. Vimala, S. Damodaran, T.V.S. Sekhar, Study of heat transfer control with magnetic field using higher order finite difference scheme. Adv. Appl. Math. Mech. 8(3), 449–463 (2016)

    Article  MathSciNet  Google Scholar 

  51. A. Zare Ghadi, H. Goodarzian, M. Gorji-Bandpy, M. Sadegh Valipour, Numerical investigation of magnetic effect on forced convection around two-dimensional circular cylinder embedded in porous media. Engineering applications of computational fluid mechanics 6(3), 395–402 (2012)

    Article  Google Scholar 

  52. S. Udhayakumar, A.D. Abin Reejesh, T.V.S. Sekhar, R. Sivakumar, Study of directional control of heat transfer and flow control in the magnetohydrodynamic flow in cylindrical geometry. Int. J. Heat Fluid Flow 61, 482–498 (2016)

    Article  Google Scholar 

  53. B.H.S. Raju, D. Nath, S. Pati, L. Baranyi, Analysis of mixed convective heat transfer from a sphere with an aligned magnetic field. Int. J. Heat Mass Transf. 162, 120342 (2020)

    Article  Google Scholar 

  54. H. Saffarzadeh, M.H. Djavareshkian, A numerical study of the entropy generation and heat transfer rate of airflow around a NACA 0015 airfoil subjected to an external magnetic field. Phys. Scr. 96(5), 055708 (2021)

    Article  ADS  Google Scholar 

  55. M. Farahi Shahri, A. Hossein Nezhad, A competitive study on different operational models for MHD flow balancing and thermal management inside a fusion blanket manifold. Eur. Phys. J. Plus 136, 1–14 (2021)

    Article  Google Scholar 

  56. I. Tiselj, E. Pogrebnyak, C. Li, A. Mosyak, G. Hetsroni, Effect of wall boundary condition on scalar transfer in a fully developed turbulent flume. Phys. Fluids 13(4), 1028–1039 (2001)

    Article  ADS  Google Scholar 

  57. R. Ahmad, Z. Qureshi, Laminar mixed convection from a uniform heat flux horizontal cylinder in a crossflow. J. Thermophys. Heat Transf. 6(2), 277–287 (1992)

    Article  ADS  Google Scholar 

  58. W. Khan, J. Culham, M. Yovanovich, Fluid flow around and heat transfer from an infinite circular cylinder. J. Heat Transf. 127(7), 785–790 (2005)

    Article  Google Scholar 

  59. A.K. Dhiman, R.P. Chhabra, A. Sharma, V. Eswaran, Effects of Reynolds and Prandtl numbers on heat transfer across a square cylinder in the steady flow regime. Numer. Heat Transf. Part A: Appl. 49(7), 717–731 (2006)

    Article  ADS  Google Scholar 

  60. R.P. Bharti, R. Chhabra, V. Eswaran, A numerical study of the steady forced convection heat transfer from an unconfined circular cylinder. Heat Mass Transf. 43, 639–648 (2007)

    Article  ADS  Google Scholar 

  61. H. Johnston, C.R. Doering, Comparison of turbulent thermal convection between conditions of constant temperature and constant flux. Phys. Rev. Lett. 102(6), 064501 (2009)

    Article  ADS  Google Scholar 

  62. W. Ren, C. Shu, W. Yang, An efficient immersed boundary method for thermal flow problems with heat flux boundary conditions. Int. J. Heat Mass Transf. 64, 694–705 (2013)

    Article  Google Scholar 

  63. S.B. Paramane, A. Sharma, Numerical investigation of heat and fluid flow across a rotating circular cylinder maintained at constant temperature in 2-D laminar flow regime. Int. J. Heat Mass Transf. 52(13–14), 3205–3216 (2009)

    Article  Google Scholar 

  64. M. Sufyan, S. Manzoor, N.A. Sheikh, Free stream flow and forced convection heat transfer across rotating circular cylinder in steady regime: effects of rotation, Prandtl number and thermal boundary condition. J. Mech. Sci. Technol. 29, 1781–1797 (2015)

    Article  Google Scholar 

  65. B.H.S. Raju, D. Nath, S. Pati, Analysis of mixed convective heat transfer past an isoflux/isothermal sphere: influence of Prandtl number. Phys. Scr. 95(8), 085211 (2020)

    Article  Google Scholar 

  66. A. Hassanpour, A. Ranjbar, M. Sheikholeslami, Numerical study for forced MHD convection heat transfer of a nanofluid in a square cavity with a cylinder of constant heat flux. Eur. Phys. J. Plus 133, 1–15 (2018)

    Article  Google Scholar 

  67. I.S. Awaludin, R. Ahmad, A. Ishak, On the stability of the flow over a shrinking cylinder with prescribed surface heat flux. Propuls. Power Res. 9(2), 181–187 (2020)

    Article  Google Scholar 

  68. I. Sarris, G. Zikos, A. Grecos, N. Vlachos, On the limits of validity of the low magnetic Reynolds number approximation in MHD natural-convection heat transfer. Numer. Heat Transf. Part B: Fundam. 50(2), 157–180 (2006)

    Article  ADS  Google Scholar 

  69. E. Erturk, T.C. Corke, C. Gökçöl, Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers. Int. J. Numer. Methods Fluids 48(7), 747–774 (2005)

    Article  ADS  Google Scholar 

  70. W.R. Briley, A numerical study of laminar separation bubbles using the Navier–Stokes equations. J. Fluid Mech. 47(4), 713–736 (1971)

    Article  ADS  Google Scholar 

  71. J.-G. Liu, C. Wang, H. Johnston, A fourth order scheme for incompressible Boussinesq equations. J. Sci. Comput. 18, 253–285 (2003)

    Article  MathSciNet  Google Scholar 

  72. S. Pawar, S.M. Rahman, H. Vaddireddy, O. San, A. Rasheed, P. Vedula, A deep learning enabler for nonintrusive reduced order modeling of fluid flows. Phys. Fluids 31(8), 085101 (2019)

    Article  ADS  Google Scholar 

  73. J. Park, K. Kwon, H. Choi, Numerical solutions of flow past a circular cylinder at Reynolds numbers up to 160. KSME Int. J. 12, 1200–1205 (1998)

    Article  Google Scholar 

  74. S. Sen, S. Mittal, G. Biswas, Steady separated flow past a circular cylinder at low Reynolds numbers. J. Fluid Mech. 620, 89–119 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Hema Sundar Raju.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, R., Raju, B.H.S. Influence of isoflux boundary condition on forced convection due to arbitrary orientation of magnetohydrodynamic flow in cylindrical geometry. Eur. Phys. J. Plus 139, 422 (2024). https://doi.org/10.1140/epjp/s13360-024-05229-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05229-5

Navigation