Skip to main content
Log in

Temperature dependence of exchange-spring interaction in core–shell Co0.6Zn0.4Fe2O4/ SrFe12O19 magnetic nanofibers

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The study investigated the temperature dependence of the exchange-spring interaction in core–shell Co0.6Zn0.4Fe2O4 (core)/SrFe12O19 (shell) magnetic nanofibers. It was found that the squareness of the exchange-spring magnets, and thus the exchange-spring interaction, actually improved as the temperature decreased. The research found that the temperature trends of the soft phase exchange field (Hex) and the Bloch wall width of the hard phase (δh) are crucial in determining how the exchange-spring interaction functions under temperature changes. A competition between the temperature trends of Hex and δh was observed, where decreasing the temperature led to an increase in Hex (improving the exchange-spring interaction) and a decrease in δh (deteriorating the exchange-spring interaction). The study suggests that the Curie temperature (Tc) and the function of the temperature trend (τ) play vital roles in the rate of change of Hex and δh. Considering the Tc of the soft and hard phases and the τ of Hex and δh, it was observed that the rate of increase in Hex became greater than the rate of decrease in δh with decreasing temperature. Therefore, the study concludes that the exchange-spring interaction improved with a reduction in temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

No data associated in the manuscript.

References

  1. J.K. Han, A.A. Baker, J.R.I. Lee, S.K. McCall, Nanoscale 15, 14782 (2023)

    Article  Google Scholar 

  2. A. Lopez-Ortega, M. Estrader, G. Salazar-Alvarez, A.G. Roca, J. Nogues, Phys. Rep. 553, 1 (2015)

    Article  ADS  Google Scholar 

  3. J. Lee, J. Kim, D. Kim, G. Lee, Oh. Yeong-Been, T.-Y. Hwang, J.-H. Lim, H.-B. Cho, J. Kim, Y.-H. Choa, ACS Appl. Mater. Interfaces 11, 26222 (2019)

    Article  Google Scholar 

  4. R. Mohan, M.P. Ghosh, S. Mukherjee, Eur. Phys. J. B. 93, 85 (2020)

    Article  ADS  Google Scholar 

  5. D.A. Balaev, S.V. Semenov, A.A. Dubrovskii, A.A. Krasikov, S.I. Popkov, S.S. Yakushkin, V.L. Kirillov, O.N. Mart’yanov, Phys. Solid State 62, 285 (2020)

    Article  ADS  Google Scholar 

  6. A. Scholl, M. Liberati, E. Arenholz, H. Ohldag, J. Stöhr, Phys. Rev Lett. 92, 247201 (2004)

    Article  ADS  Google Scholar 

  7. M. Yassine, N. EI Ghouch, A.M. Abdallah, K. Habanjar, R. Awad, J. Alloys Compounds 907, 164501 (2022)

    Article  Google Scholar 

  8. K. Mibu, T. Nagahama, T. Shinjo, T. Ono, Phys. Rev. B 58, 6442 (1998)

    Article  ADS  Google Scholar 

  9. D. Suess, S. Eder, J. Lee, R. Dittrich, J. Fidler, J. Harrell, T. Schrefl, G. Hrkac, M. Schabes, N. Supper et al., Phys. Rev. B 75, 174430 (2007)

    Article  ADS  Google Scholar 

  10. V.I. Nikitenko, V. Gornakov, A.J. Shapiro, R.D. Shull, K. Liu, S. Zhou, C. Chien, Phys. Rev. Lett. 84, 765 (2000)

    Article  ADS  Google Scholar 

  11. R. Mohan, M.P. Ghosh, R. Skomski, S. Mukherjee, Euro. Phys. J. Plus 135, 413 (2020)

    Article  Google Scholar 

  12. D. Huang, X. Wen, J. Dai, Q. Wang, H. Liu, Z. Li, J. Supercond. Novel Magnet. 36(7), 11 (2023)

    Google Scholar 

  13. E.F. Kneller, R. Hawig, IEEE Trans. Magn. 27, 3588 (1991)

    Article  ADS  Google Scholar 

  14. F. Eskandari, P. Kameli, H. Salamati, Appl. Surf. Sci. 466, 215 (2019)

    Article  ADS  Google Scholar 

  15. G. Lavorato, E. Winkler, B. Rivas-Murias, F. Rivadulla, Phys. Rev. B 94, 054405 (2016)

    Article  ADS  Google Scholar 

  16. E.L. Winkler, E. Lima Jr., D. Tobia, M.E. Saleta, H.E. Troiani, E. Agostinelli, D. Fiorani, R.D. Zysler, Appl. Phys. Lett. 101, 252405 (2012)

    Article  ADS  Google Scholar 

  17. M. Estrader, A. López-Ortega, S. Estradé, I. Golosovsky, G. Salazar-Alvarez, M. Vasilakaki, K. Trohidou, M. Varela, D. Stanley, M. Sinko et al., Nature Commun. 4, 2960 (2013)

    Article  ADS  Google Scholar 

  18. R. Skomski, J. Coey, Phys. Rev. B 48, 15812 (1993)

    Article  ADS  Google Scholar 

  19. J. Gu, J. Burgess, C.-Y. You, J. Appl. Phys. 107, 103918 (2010)

    Article  ADS  Google Scholar 

  20. J.P. Liu, R. Skomski, Y. Liu, D.J. Sellmyer, J. Appl. Phys. 87, 6740 (2000)

    Article  ADS  Google Scholar 

  21. B. Balasubramanian, P. Mukherjee, R. Skomski, P. Manchanda, B. Das, D.J. Sellmyer, Sci. Rep. 4, 6265 (2014)

    Article  ADS  Google Scholar 

  22. J.E. Galindo, A. Bhuiya, F.R. Gómez, J.M. Aquino, C. Botez, J. Phys. D Appl. Phys. 41, 095008 (2008)

    Article  ADS  Google Scholar 

  23. J. Yin, Z. Sun, Z. Zhang, H. Zhang, B. Shen, J. Appl. Phys. 89, 8351 (2001)

    Article  ADS  Google Scholar 

  24. H. Sakai, T. Hattori, Y. Tokunaga, S. Kambe, H. Ueda, Y. Tanioku, C. Michioka, K. Yoshimura, K. Takao, A. Shimoda et al., Phys. Rev. B 98, 064403 (2018)

    Article  ADS  Google Scholar 

  25. R. Pawar, S.M. Patange, A. Shitre, S. Gore, S. Jadhav, S.E. Shirsath, RSC Adv. 8, 25258 (2018)

    Article  ADS  Google Scholar 

  26. Y. Zhang, Z.-M. Huang, X. Xu, C.T. Lim, S. Ramakrishna, Chem. Mater. 16, 3406 (2004)

    Article  Google Scholar 

  27. A. Yarin, Polym. Adv. Technol. 22, 310 (2011)

    Article  Google Scholar 

  28. U. Ozgür, Y. Alivov, H. Morko, J. Mater. Sci. Mater. Electron. 20, 789 (2009)

    Article  Google Scholar 

  29. F. Gu, W. Pan, Q. Liu, J. Wang, J. Phys. D Appl. Phys. 46, 445003 (2013)

    Article  ADS  Google Scholar 

  30. P. Jing, J. Du, J. Wang, L. Pan, J. Li, Q. Liu et al., Sci. Rep. 5, 15089 (2015)

    Article  ADS  Google Scholar 

  31. A.R. Reddy, G.R. Mohan, D. Ravinder, B. Boyanov, J. Mater. Sci. 34, 3169 (1999)

    Article  ADS  Google Scholar 

  32. A. Poorbafrani, H. Salamati, P. Kameli, Ceram. Int. 41, 1603 (2015)

    Article  Google Scholar 

  33. L. Sun, Y. Hao, C.-L. Chien, P.C. Searson, IBM J. Res. Dev. 49, 79 (2005)

    Article  Google Scholar 

  34. B.D. Cullity, C.D. Graham, Introduction to magnetic materials (John Wiley & Sons, Hoboken, 2011)

    Google Scholar 

  35. F. Bloch, Zeitschrift für Phys. 61, 206 (1930)

    Article  ADS  Google Scholar 

  36. J.H. van Vleck, Phys. Rev. 52, 1178 (1937)

    Article  ADS  Google Scholar 

  37. U. Atxitia, D. Hinzke, O. Chubykalo-Fesenko, U. Nowak, H. Kachkachi, O.N. Mryasov, R. Evans, R.W. Chantrell, Phys. Rev. B 82, 134440 (2010)

    Article  ADS  Google Scholar 

  38. G. Asti, M. Solzi, M. Ghidini, F.M. Neri, Phys. Rev. B 69, 174401 (2004)

    Article  ADS  Google Scholar 

  39. E. Goto, N. Hayashi, T. Miyashita, K. Nakagawa, J. Appl. Phys. 36, 2951 (1965)

    Article  ADS  Google Scholar 

  40. K. Mandal, S. Mitra, P.A. Kumar, EPL (Europhys. Lett.) 75, 618 (2006)

    Article  ADS  Google Scholar 

  41. C. R. Alves, R. Aquino, M. Sousa, H. R. Rechenberg, G. F. Goya, F. Tourinho, and J. Depeyrot, In: Journal of Metastable and Nanocrystalline Materials, Vol. 20 (Trans Tech Publ, 2004), pp. 694–699.

  42. C. Zener, Phys. Rev. 96, 1335 (1954)

    Article  ADS  Google Scholar 

  43. H. Callen, E. Callen, J. Phys. Chem. Solids 27, 12711285 (1966)

    Article  Google Scholar 

  44. G. Long, H. Zhang, D. Li, R. Sabirianov, Z. Zhang, H. Zeng, Appl. Phys. Lett. 99, 202103 (2011)

    Article  ADS  Google Scholar 

  45. J. Wang, F. Zhao, W. Wu, and G.-M. Zhao, \Unusual temperature dependence of the magnetic anisotropy constant in barium ferrite bafe12o19," (2011).

  46. Z. Zi, Y. Sun, X. Zhu, Z. Yang, W. Song et al., J. Magn. Magn. Mater. 320, 2746 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Isfahan University of Technology for their support of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parviz Kameli.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bina, M., Kameli, P. & Varzaneh, A.G. Temperature dependence of exchange-spring interaction in core–shell Co0.6Zn0.4Fe2O4/ SrFe12O19 magnetic nanofibers. Eur. Phys. J. Plus 139, 429 (2024). https://doi.org/10.1140/epjp/s13360-024-05217-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05217-9

Navigation