Skip to main content
Log in

Dynamics prediction using an artificial neural network for a weakly conductive ionized fluid streamed over a vibrating electromagnetic plate

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Recently, the study of weak conductor dynamics influenced by an electromagnetic (Riga) plate has garnered scholarly interest, taking into account various physical factors. Electromagnetic sensors find extensive use across engineering and industrial domains, spurring our exploration into the flow characteristics and heat–mass transfer mechanisms of a mildly conducting ionized fluid near an oscillating electromagnetic plate embedded within porous structures. The chosen flow scenario is meticulously modeled, encapsulating various physical dynamics such as radiative heat discharge, chemical interactions, Darcian porous drag effects, buoyancy forces, and velocity slippage conditions. Within this context, the Darcy model is employed to articulate drag influences in the porous domain. The resulting flow model is mathematically articulated as a set of time-dependent partial differential equations (PDEs). Leveraging the Laplace transform (LT) approach, we derive concise representations for the core variables in the model. In our study, dimensionless fluid velocity, temperature, and concentration gradients are extensively graphed, and the corresponding non-dimensional heat transfer, mass transfer, and friction rates are tabled. Key observations highlight an amplification in the velocity with an enhancement in the modified Hartmann number and diminishing with an enlargement in the Darcy number. Higher radiative heat intensities correspondingly dissipate more energy, cooling the medium further. Notably, the chemical reactions induce higher heat and mass transfer rates in the hybrid nanofluid. An artificial neural network (ANN) model is also developed based on reference datasets procured via the LT evaluation. This ANN framework exhibits commendable precision in predicting essential flow quantities, achieving an impressive 99.95% Such innovative insights from this research hold great promise for practical applications in steam generators, chemical reactors, electromagnetic sensors and gadgets, and material processing phase transitions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

The manuscript has associated data in a data repository. [Authors’comment: Data will be available on request].

Abbreviations

C :

Concentration (mol m\(^{-3}\))

\(C_\infty \) :

Constant ambient concentration (mol m\(^{-3}\))

\(c_{\textrm{p}}\) :

Specific heat at constant pressure (J kg\(^{-1}\)K\(^{-1}\))

\(C_w\) :

Riga plate concentration (mol m\(^{-3}\))

D :

Mass diffusivity (m\(^2\)s\(^{-1}\))

\(\text {Da}\) :

Darcy number

E :

Modified Hartmann number

\(e_{\lambda _0}\) :

Planck’s function

\({\tilde{f}}\) :

Activation function

g :

Acceleration due to gravity (m s\(^{-2}\))

\({\text {Gc}}\) :

Solutal Grashof number

\({\text {Gr}}\) :

Thermal Grashof number

i :

Complex unity (\(=\sqrt{-1}\))

\(J_0\) :

Characteristic electric strength by electrodes (M m\(^{-1}\))

k :

Dimensionless frequency

K :

Permeability of porous medium (m\(^2\))

\({\text {Kr}}\) :

Chemical reaction parameter

\({\text {Kr}}^*\) :

Chemical reaction coefficient (M s\(^{-1}\))

\(K_{\lambda _0}\) :

Absorption coefficient (m\(^{-1}\))

L :

Width of electrodes (m)

\(m_0\) :

Characteristic magnetic strength by magnets (T)

n :

Frequency

\({\text {Pr}}\) :

Prandtl number

\(q_r\) :

Radiative heat flux (kg s\(^{-3}\))

\(Q_1\) :

Species generation/absoption coefficient (m\(^2\) kg\(^{-1}\))

\({\text {Qr}}\) :

Species generation/absorption parameter

R :

Coefficient of determination

\({\text {Ra}}\) :

Radiation parameter

s :

Laplace transform parameter

S :

Dimensionless width of magnets and electrodes (m)

\({\text {Sc}}\) :

Schmidt number

t :

Time (s)

\(t_0\) :

Characteristic time (s)

T :

Temperature (K)

\(T_w\) :

Riga plate temperature (K)

\(T_\infty \) :

Constant ambient temperature (K)

u :

Velocity (m s\(^{-1}\))

\(u_0\) :

Reference velocity (m s\(^{-1}\))

\(u_1\) :

Dimensionless velocity

(xy):

Cartesian coordinates (m)

\(\beta \) :

Velocity slippage parameter

\(\beta _0\) :

Velocity slippage length

\(\beta _C\) :

Volumetric solutal expansion coefficient

\(\beta _T\) :

Volumetric thermal expansion coefficient (K\(^{-1}\))

\(\eta \) :

Dimensionless variable

\(\theta \) :

Dimensionless temperature

\(\kappa \) :

Thermal conductivity (W m\(^{-1}\)K\(^{-1}\))

\(\lambda \) :

Thermal radiation wavelength (m)

\(\mu \) :

Dynamic viscosity (kg m\(^{-1}\)s\(^{-1}\))

\(\rho \) :

Density (kg m\(^{-3}\))

\(\sigma \) :

Electrical conductivity (\(\Omega ^{-1}\)m\(^{-1}\))

\(\tau \) :

Dimensionless time

\(\phi \) :

Dimensionless concentration

EMHD:

Electro-magnetodydrodynamics

ANN:

Artificial neural network

NPs:

Nanoparticles

NF:

Nanofluid

HNF:

Hybrid nanofluid

HTR:

Heat transfer rate

LT:

Laplace tranform

MLP:

Multilayer perceptron

MSE:

Mean squared error

MTR:

Mass transfer rate

SS:

Shear stress

OP:

Oscillating plate

SP:

Stationary plate

VP:

Velocity profile

References

  1. A.C. Cogley, W.C. Vincenti, S.E. Gilles, Differential approximation for radiation transfer in a non-gray gas near equilibrium. AIAA J. 6(3), 551–555 (1968)

    Article  ADS  Google Scholar 

  2. S. Das, R.N. Jana, O.D. Makinde, Natural convection near a moving vertical plate with ramped heat and mass fluxes in the presence of thermal radiation. Defect Diffus. Forum. 377, 211–232 (2017)

    Article  Google Scholar 

  3. S. Nandi, B. Kumbhakar, Unsteady MHD free convective flow past a permeable vertical plate with periodic movement and slippage in the presence of Hall current and rotation. Therm. Sci. Eng. Prog. 19, 100561 (2020)

    Article  Google Scholar 

  4. S. Das, A.S. Banu, R.N. Jana, Delineating impacts of non-uniform wall temperature and concentration on time-dependent radiation-convection of Casson fluid under magnetic field and chemical reaction. World J. Eng. 18(5), 780–795 (2021)

    Article  Google Scholar 

  5. Y.D. Reddy, B.S. Goud, M.A. Kumar, Radiation and heat absorption effects on an unsteady MHD boundary layer flow along an accelerated infinite vertical plate with ramped plate temperature in the existence of slip condition. Dyn. Partial. Differ. Equ. 4, 100166 (2021)

    Google Scholar 

  6. M.V. Krishna, Radiation-absorption, chemical reaction, Hall and ion slip impacts on magnetohydrodynamic free convective flow over semi-infinite moving absorbent surface. Chin. J. Chem. Eng. 34, 40–52 (2021)

    Article  Google Scholar 

  7. M.P. Devi, S. Srinivas, Two layered immiscible flow of viscoelastic liquid in a vertical porous channel with Hall current, thermal radiation and chemical reaction. Int. Commun. Heat Mass Transf. 142, 106612 (2023)

    Article  Google Scholar 

  8. H. Upreti, A.K. Pandey, N. Joshi, O.D. Makinde, Thermodynamics and heat transfer analysis of magnetized Casson hybrid nanofluid flow via a Riga plate with thermal radiation. J. Comput. Biophys. Chem. 22(03), 321–334 (2023)

    Article  Google Scholar 

  9. S. Sarkar, S. Das, Sensitivity investigation of Casson hybrid nanofluid near a perforated Riga plate in the presence of heat radiation and the Arrhenius chemical reaction. Int. J. Ambient Energy (2023). https://doi.org/10.1080/01430750.2023.2258896

    Article  Google Scholar 

  10. B. Mahanthesh, B.J. Gireesha, R.S.R. Gorla, Heat and mass transfer effects on the mixed convective flow of chemically reacting nanofluid past a moving/stationary vertical plate. Alex. Eng. J. 55(1), 569–581 (2016)

    Article  Google Scholar 

  11. S.R. Sheri, K.R. Reddy, A.K. Suram, M.C.K. Reddy, Hall current and chemical reaction effects on free convective flow past an accelerated moving vertical plate with ramped temperature. ARPN J. Eng. Appl. Sci. 13(6), 2017–2031 (2018)

    Google Scholar 

  12. S.M. Arifuzzaman, M.S. Khan, M.F.U. Mehedi, B.M.J. Rana, S.F. Ahmmed, Chemically reactive and naturally convective high speed MHD fluid flow through an oscillatory vertical porous plate with heat and radiation absorption effect. Eng. Sci. Technol. Int. J. 21(2), 215–228 (2018)

    Google Scholar 

  13. S. Sarma, N. Ahmed, Dufour effect on unsteady MHD flow past a vertical plate embedded in porous medium with ramped temperature. Sci. Rep. 12, 13343 (2022)

    Article  ADS  Google Scholar 

  14. A. Ali, S. Das, R.N. Jana, Oblique rotational dynamics of chemically reacting tri-hybridized nanofluids over a suddenly moved plate subject to Hall and ion slip currents, Newtonian heating and mass fluxes. J. Indian Chem. Soc. 100(4), 100983 (2023)

    Article  Google Scholar 

  15. A.E. Scheidegger, The physics of flow through porous media. Soil Sci. 86(6), 355 (1958)

    Article  ADS  Google Scholar 

  16. A. Khalid, I. Khan, S. Khan, S. Shafie, Unsteady MHD free convection flow of Casson fluid past over an oscillating vertical plate embedded in a porous medium. Eng. Sci. Tech. Int. J. 18(3), 309–317 (2015)

    Google Scholar 

  17. H.R. Kataria, H.R. Patel, Radiation and chemical reaction effects on MHD Casson fluid flow past an oscillating vertical plate embedded in porous medium. Alex. Eng. J. 55, 583–595 (2016)

    Article  Google Scholar 

  18. H.R. Kataria, H.R. Patel, Soret and heat generation effects on MHD Casson fluid flow past an oscillating vertical plate embedded through porous medium. Alex. Eng. J. 55(3), 2125–2137 (2016)

    Article  Google Scholar 

  19. S. Das, A.S. Banu, A. Sensharma, R.N. Jana, Transient magnetohydrodynamic (MHD) casson fluid flow past an oscillating rotating vertical plate embedded in a porous medium. Spec. Top. Rev. Porous Media 3(9), 239–260 (2018)

    Article  Google Scholar 

  20. C.V. Bhaskar, S.R. Sheri, A.K. Suram, Numerical analysis of MHD Casson fluid flow over an exponentially accelerated vertical plate in embedded porous medium with ramped wall temperature and ramped surface concentration in uniform magnetic field. Int. J. Appl. Power Eng. 9(2), 89–99 (2020)

    Google Scholar 

  21. M. Narahari, S. Tippa, R. Pendyala, C. Fetecau, Soret, heat generation, radiation and porous effects on MHD free convection flow past an infinite plate with oscillating temperature. J. Therm. Anal. Calorim. 143, 2525–2543 (2020)

    Article  Google Scholar 

  22. T. Anwar, P. Kumam, W. Watthayu, An exact analysis of unsteady MHD free convection flow of some nanofluids with ramped wall velocity and ramped wall temperature accounting heat radiation and injection/consumption. Sci. Rep. 10(1), 17830 (2020)

    Article  ADS  Google Scholar 

  23. N. Gulle, R. Kodi, Soret radiation and chemical reaction effect on MHD Jeffrey fluid flow past an inclined vertical plate embedded in porous medium. Mater. Today: Proc. 50, 2218–2226 (2022)

    Google Scholar 

  24. C. Navier, Memoir on the laws of the Movement of Fluids. Mem. R. Acad. Sci. Inst. France 6, 389–440 (1823)

    Google Scholar 

  25. S. Das, A. Sensharma, R.N. Jana, R.P. Sharma, Slip flow of nanofluid past a vertical plate with ramped wall temperature considering thermal radiation. J. Nanofluids 6(6), 1054–1064 (2017)

    Article  Google Scholar 

  26. S. Das, B. Tarafdar, R.N. Jana, Hall effects on unsteady MHD rotating flow past a periodically accelerated porous plate with slippage. Eur. J. Mech. B/Fluids 72, 135–143 (2018)

    Article  MathSciNet  Google Scholar 

  27. S. Das, A. Ali, R.N. Jana, Darcian slip flow of rotating magnetoreactive PEG conveying MoS\(_2\) Casson nanofluid with ramped temperature and concentration. Spec. Top. Rev. Porous Media 11(1), 71–102 (2020)

    Article  Google Scholar 

  28. A. Ali, S.M. Banerjee, S. Das, Hall and ion slip current’s impact on magneto-sodium alginate hybrid nanoliquid past a moving vertical plate with ramped heating, velocity slip and Darcy effects. Multidiscip. Model. Mater. Struct. 17(1), 65–101 (2020)

    Article  Google Scholar 

  29. A. Gailitis, O. Lielausis, On a possibility to reduce the hydrodynamic resistance of a plate in an electrolyte. Appl. Magnetohydrodyn. 12, 143–146 (1961)

    Google Scholar 

  30. E. Grinberg, On determination of properties of some potential fields. Appl. Magnetohydrodyn. Rep. Phys. Inst. Riga. 12, 147–154 (1961)

    Google Scholar 

  31. A. Ahmad, S. Asghar, S. Afzal, Flow of nanofluid past a Riga plate. J. Magn. Magn. Mater. 402, 44–48 (2016)

    Article  ADS  Google Scholar 

  32. R. Ahmad, M. Mustafa, M. Turkyilmazoglu, Buoyancy effects on nanofluid flow past a convectively heated vertical Riga-plate: a numerical study. Int. J. Heat Mass Transf. 111, 827–835 (2017)

    Article  Google Scholar 

  33. A. Ahmad, S. Ahmed, F.M. Abbasi, Flow and heat transfer analysis of copper-water nanofluid with temperature-dependent viscosity past a Riga plate. J. Magn. 22(2), 181–187 (2017)

    Article  Google Scholar 

  34. G. Rasool, T. Zhang, A. Shafiq, Second-grade nanofluidic flow past a convectively heated vertical Riga plate. Physica Scr. 94, 125212 (2019)

    Article  ADS  Google Scholar 

  35. A.K. Hakeem, M.K. Nayak, O.D. Makinde, Effect of exponentially variable viscosity and permeability on Blasius flow of Carreau nanofluid over an electromagnetic plate through a porous medium. J. Appl. Comput. Mech. 5(2), 390–401 (2019)

    Google Scholar 

  36. P. Loganathan, K. Deepa, Electromagnetic and radiative Casson fluid flow over a permeable vertical Riga-plate. J. Theor. Appl. Mech. 57(4), 987–998 (2019)

    Article  Google Scholar 

  37. K.K. Asogwa, S.M. Bilal, I.L. Animasaun, F.M. Mebarek-Oudina, Insight into the significance of ramped wall temperature and ramped surface concentration: The case of Casson fluid flow on an inclined Riga plate with heat absorption and chemical reaction. Nonlinear Eng. 10, 213–230 (2021)

    Article  ADS  Google Scholar 

  38. K.K. Asogwa, F.M. Mebarek-Oudina, I.L. Animasaun, Comparative investigation of water-based Al\(_2\)O\(_3\) nanoparticles through water-based CuO nanoparticles over an exponentially accelerated radiative Riga plate surface via heat transport. Arab. J. Sci. Eng. 47, 8721–8738 (2022)

    Article  Google Scholar 

  39. J.K. Singh, G.S. Seth, Heat and mass transport performance of MHD elastico-viscous fluid flow over a vertically oriented magnetized surface with magnetic and thermo diffusions. Heat Transf. 51(2), 2258–2278 (2022)

    Article  Google Scholar 

  40. M.D. Shamshuddin, F. Shahzad, W. Jamshed, O.A. Bég, M.R. Eid, T.A. Bég, Thermo-solutal stratification and chemical reaction effects on radiative magnetized nanofluid flow along an exponentially stretching sensor plate: Computational analysis. J. Magn. Magn. Mater. 565, 170286 (2023)

    Article  Google Scholar 

  41. H. Upreti, A.K. Pandey, N. Joshi, O.D. Makinde, Thermodynamics and heat transfer analysis of magnetized Casson hybrid nanofluid flow via a Riga plate with thermal radiation. J. Comput. Biophys. Chem. 22(03), 321–234 (2023)

    Article  Google Scholar 

  42. K.K. Asogwa, K.T. Kumar, B.S. Goud, J.S. Chohan, Significance of nanoparticle shape factor and buoyancy effects on a parabolic motion of EMHD convective nanofluid past a Riga plate with ramped wall temperature. Eur. Phys. J. Plus 138, 572 (2023)

    Article  Google Scholar 

  43. S. Das, N. Mahato, A. Ali, R.N. Jana, Dynamics pattern of a radioactive rGO-magnetite-water flowed by a vibrated Riga plate sensor with ramped temperature and concentration. Chem. Eng. J. Adv. 15, 100517 (2023)

    Article  Google Scholar 

  44. M.K. Nayak, S. Shaw, O.D. Makinde, A.J. Chamkha, Investigation of partial slip and viscous dissipation effects on the radiative tangent hyperbolic nanofluid flow past a vertical permeable Riga plate with internal heating: Bungiorno model. J. Nanofluids 8(1), 51–62 (2019)

    Article  Google Scholar 

  45. S. Sarkar, R.N. Jana, S. Das, Time-dependent entropy analysis in magnetized Cu–Al\(_2\)O\(_3\)/ethylene glycol hybrid nanofluid flow due to a vibrating vertical plate. Int. J. Fluid Mech. Res. 47(5), 419–443 (2020)

    Article  Google Scholar 

  46. H. Vaidya, K.V. Prasad, I. Tlili, O.D. Makinde, C. Rajashekhar, S.U. Khan, R. Kumar, D.L. Mahendra, Mixed convective nanofluid flow over a non linearly stretched Riga plate. Case Stud. Therm. Eng. 24, 100828 (2021)

    Article  Google Scholar 

  47. S. Bilal, K.K. Asogwa, H. Alotaibi, M.Y. Malik, I. Khan, Analytical treatment of radiative Casson fluid over an isothermal inclined Riga surface with aspects of chemically reactive species. Alex. Eng. J. 60(5), 4243–53 (2021)

    Article  Google Scholar 

  48. B.P. Reddy, O.D. Makinde, Newtonian heating effect on heat absorbing unsteady MHD radiating and chemically reacting free convection flow past an oscillating vertical porous plate. Int. J. Appl. Mech. 27(1), 168–187 (2022)

    Article  Google Scholar 

  49. M. Das, B. Kumbhakar, A.J. Chamkha, Significance of Navier’s slip and Arrhenius energy function in MHD flow of Casson nanofluid over a Riga plate with thermal radiation and nonuniform heat source. Int. J. Mod. Phys. B (2023). https://doi.org/10.1142/S0217979224502333

    Article  Google Scholar 

  50. Z.H. Khan, O.D. Makinde, M. Usman, R. Ahmad, W.A. Khan, Z. Huang, Inherent irreversibility in unsteady magnetohydrodynamic nanofluid flow past a slippery permeable vertical plate with fractional-order derivative. J. Comput. Des. Eng. 10(5), 2049–2064 (2023)

    Google Scholar 

  51. A. Ali, S. Das, R.N. Jana, MHD gyrating stream of non-Newtonian modified hybrid nanofluid past a vertical plate with ramped motion, Newtonian heating and Hall currents. Appl. Math. Mech. 103(09), e202200080 (2023)

    MathSciNet  Google Scholar 

  52. S. Sarkar, S. Das, Computational and statistical exploration of a Riga plate sensor’s activity in a Casson hybrid nanofluid with Arrhenius chemical kinetics. J. Mol. Liq. 390, 123035 (2023)

    Article  Google Scholar 

  53. A.L. Samuel, Some studies in machine learning using the game of checkers, II-recent progress. IBM J. Res. Dev 11(6), 601–617 (1967)

    Article  Google Scholar 

  54. R.J. Erb, Introduction to backpropagation neural network computation. Pharm Res. 10, 165–170 (1993)

    Article  Google Scholar 

  55. M. Shoaib et al., Intelligent backpropagated neural networks application on Darcy–Forchheimer ferrofluid slip flow system. Int. Commun. Heat Mass Transf. 129, 105730 (2021)

    Article  Google Scholar 

  56. A. Shafiq, A.B. Çolak, T.N. Sindhu, Significance of EMHD graphene oxide (GO) water ethylene glycol nanofluid flow in a Darcy–Forchheimer medium by machine learning algorithm. Eur. Phys. J. Plus 138, 213 (2023)

    Article  Google Scholar 

  57. Z. Khan, S. Zuhra, S. Islam, M.A.Z. Raja, A. Ali, Modeling and simulation of Maxwell nanofluid flows in the presence of Lorentz and Darcy–Forchheimer forces: toward a new approach on Buongiorno’s model using artificial neural network (ANN). Eur. Phys. J. Plus 138, 107 (2023)

    Article  Google Scholar 

  58. K. Ramesh, A.S. Warke, K. Kotecha, K. Vajravelu, Numerical and artificial neural network modelling of magnetorheological radiative hybrid nanofluid flow with Joule heating effects. J. Magn. Magn. Mater. 570, 170552 (2023)

    Article  Google Scholar 

  59. A. Shafiq, A.B. Çolak, T.N. Sindhu, Modeling of Soret and Dufour’s convective heat transfer in nanofluid flow through a moving needle with artificial neural network. Arab. J. Sci. Eng. 48(3), 2807–2820 (2023)

    Article  Google Scholar 

  60. S.E. Awan, M. Awais, M.A.Z. Raja, S. Rehman, C.M. Shu, Bayesian regularization knack-based intelligent networks for thermo-physical analysis of 3D MHD nanofluidic flow model over an exponential stretching surface. Eur. Phys. J. Plus 138(1), 2 (2023)

    Article  Google Scholar 

Download references

Acknowledgements

The author expresses gratitude to the reviewers for their insightful feedback and encouraging remarks, which have enhanced the quality of this article.

Funding

There is no funding agency associated with this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Das.

Ethics declarations

Conflict of interest

Authors do not have any Conflict of interest.

Appendix A

Appendix A

The following constant expressions are utilized in the results.

$$\begin{aligned} \lambda _1 &= {} \textrm{Qr},\; \lambda _2=\textrm{Sc},\\ a &= {} \frac{1}{\lambda _2-\textrm{Pr}},\; \lambda _3=a(\textrm{Ra}-\textrm{Kr} \lambda _2),\; \lambda _4=\frac{\textrm{Ra}}{\textrm{Pr}}, \;\lambda _{5}=\textrm{Pr},\\ a_1 &= {} \frac{1}{\lambda _2-1},\; \lambda _{6}=a_1\left( \frac{1}{\textrm{Da}}-\textrm{Kr} \lambda _2\right) ,\; a_2=\frac{1}{\lambda _{5}-1},\\ \lambda _{7} &= {} a_2\left( \frac{1}{\textrm{Da}}-\lambda _4 \lambda _{5}\right) ,\;A_1=a_1 \textrm{Gc}-A_2, \;A_2=\frac{a a_1 \lambda _1 \textrm{Gr}}{\lambda _{6}-\lambda _3},\\ B_1 &= {} a_2 \textrm{Gr}+B_2,\; B_2=\frac{a a_2 \lambda _1 \textrm{Gr}}{\lambda _{7}-\lambda _3},\\ \lambda _{8} &= {} S^2-\frac{1}{\textrm{Da}},\;r_0=\frac{1}{\beta },\; r=\frac{1}{r_1 \textrm{Da}},\;r_1=\frac{1}{\beta \sqrt{\lambda _2}},\;r_2=\frac{1}{\beta \sqrt{\lambda _{5}}}\\ F_1(\eta , a, \tau ) &= {} L^{-1}\left[ \frac{\textrm{e}^{-\sqrt{s+a}\,\eta }}{s}\right] \\ &= {} \frac{1}{2}\left[ \textrm{e}^{\eta \sqrt{a}}\,\textrm{erfc} \left( \frac{\eta }{2\sqrt{\tau }}+\sqrt{a\tau }\right) +\textrm{e}^{-\eta \sqrt{a}}\,\textrm{erfc} \left( \frac{\eta }{2\sqrt{\tau }}-\sqrt{a\tau }\right) \right] ,\\ F_2(\eta , a, b, \tau ) &= {} L^{-1}\Big [\frac{\textrm{e}^{-\sqrt{s+a}\,\eta }}{s(s-b)}\Big ]\\ &= {} \frac{1}{2b}\textrm{e}^{b\tau }\left[ \textrm{e}^{\eta \sqrt{a+b}}\,\textrm{erfc} \left\{ \frac{\eta }{2\sqrt{\tau }}+\sqrt{(a+b)\tau }\right\} +\textrm{e}^{-\eta \sqrt{a+b}}\,\textrm{erfc} \left\{ \frac{\eta }{2\sqrt{\tau }}-\sqrt{(a+b)\tau }\right\} \right] \\{} &\quad {} -\frac{1}{2b}\left[ \textrm{e}^{\eta \sqrt{a}}\,\textrm{erfc} \left( \frac{\eta }{2\sqrt{\tau }}+\sqrt{a\tau }\right) +\textrm{e}^{-\eta \sqrt{a}}\,\textrm{erfc} \left( \frac{\eta }{2\sqrt{\tau }}-\sqrt{a\tau }\right) \right] ,\\ F_3(\eta , \alpha _0, a, b, \tau ) &= {} L^{-1}\left[ \frac{\textrm{e}^{-\sqrt{s+a}\,\eta }}{(s-b) (\alpha _0+\sqrt{s+a})}\right] \\ &= {} -\frac{\alpha _0 \textrm{e}^{\eta \alpha _0+(\alpha _0^2-a)\tau }}{(\alpha _0^2-a-b)}\,\textrm{erfc}\left( \frac{\eta }{2\sqrt{\tau }}+\alpha _0 \sqrt{\tau }\right) \\{} &\qquad +\frac{\textrm{e}^{b \tau }}{2(\alpha _0^2-a-b)}\left[ (\alpha _0+\sqrt{a+b}) \textrm{e}^{\eta \sqrt{a+b}}\,\textrm{erfc} \left\{ \frac{\eta }{2\sqrt{\tau }}+\sqrt{(a+b)\tau }\right\} \right. \\{} &\qquad \left. +(\alpha _0-\sqrt{a+b}) \textrm{e}^{-\eta \sqrt{a+b}}\,\textrm{erfc} \left\{ \frac{\eta }{2\sqrt{\tau }}-\sqrt{(a+b)\tau }\right\} \right] ,\\ F_4(\eta , \alpha _0, a, b, \tau ) &= {} L^{-1}\Big [\frac{\textrm{e}^{-\sqrt{s+a}\,\eta }}{s(s-b) (\alpha _0+\sqrt{s+a})}\Big ]\\ &= {} -\frac{\alpha _0 \textrm{e}^{\eta \alpha _0+(\alpha _0^2-a)\tau }}{(\alpha _0^2-a-b) (\alpha _0^2-a)}\,\textrm{erfc}\left( \frac{\eta }{2\sqrt{\tau }}+\alpha _0 \sqrt{\tau }\right) \\ &\qquad +\frac{\textrm{e}^{b \tau }}{2b(\alpha _0^2-a-b)}\left[ (\alpha _0+\sqrt{a+b}) \textrm{e}^{\eta \sqrt{a+b}}\,\textrm{erfc} \left\{ \frac{\eta }{2\sqrt{\tau }}+\sqrt{(a+b)\tau }\right\} \right. \\ &\qquad {} \left. +(\alpha _0-\sqrt{a+b}) \textrm{e}^{-\eta \sqrt{a+b}}\,\textrm{erfc} \left\{ \frac{\eta }{2\sqrt{\tau }}-\sqrt{(a+b)\tau }\right\} \right] \\ &\qquad {} -\frac{1}{2b(\alpha _0^2-a)}\left[ (\alpha _0+\sqrt{a}) \textrm{e}^{\eta \sqrt{a}}\,\textrm{erfc} \left( \frac{\eta }{2\sqrt{\tau }}+\sqrt{a\tau }\right) \right. \\ &\qquad {} \left. +(\alpha _0-\sqrt{a})\textrm{e}^{-\eta \sqrt{a}}\,\textrm{erfc} \left( \frac{\eta }{2\sqrt{\tau }}-\sqrt{a\tau }\right) \right] , \end{aligned}$$
$$\begin{aligned} F_5(\eta , \alpha _0, a, b, c, \tau ) &= L^{-1}\Big [\frac{\textrm{e}^{-\sqrt{s+a}\,\eta }}{(s-b) \sqrt{s+c} (\alpha _0+\sqrt{s+a})}\Big ]\\ &= frac{\alpha ^2_0 \textrm{e}^{\eta \alpha _0+(\alpha _0^2-a)\tau }}{(\alpha _0^2-a+c) (\alpha _0^2-a-b)} \,\textrm{erfc}\left( \frac{\eta }{2\sqrt{\tau }}+\alpha _0 \sqrt{\tau }\right) \\{} &\quad {} +\frac{(a-c) \textrm{e}^{-c \tau }}{2 (b+c) (\alpha _0^2-a+c)}\left[ \left( 1+\frac{\alpha _0}{\sqrt{a-c}}\right) \textrm{e}^{\eta \sqrt{a-c}}\,\textrm{erfc} \left\{ \frac{\eta }{2\sqrt{\tau }}+\sqrt{(a-c)\tau }\right\} \right. \\{} &\quad {} \left. +\left( 1-\frac{\alpha _0}{\sqrt{a-c}}\right) \textrm{e}^{-\eta \sqrt{a-c}}\,\textrm{erfc} \left\{ \frac{\eta }{2\sqrt{\tau }}-\sqrt{(a-c)\tau }\right\} \right] \\{} &\quad {} -\frac{(a+b) \textrm{e}^{b \tau }}{2 (b+c) (\alpha _0^2-a-b)}\left[ \left( 1+\frac{\alpha _0}{\sqrt{a+b}}\right) \textrm{e}^{\eta \sqrt{a+b}}\,\textrm{erfc} \left\{ \frac{\eta }{2\sqrt{\tau }}+\sqrt{(a+b)\tau }\right\} \right. \\{} &\quad {} \left. +\left( 1-\frac{\alpha _0}{\sqrt{a+b}}\right) \textrm{e}^{-\eta \sqrt{a+b}}\,\textrm{erfc} \left\{ \frac{\eta }{2\sqrt{\tau }}-\sqrt{(a+b)\tau }\right\} \right] ,\\ F^\prime _1(0, a, \tau ) &= {} -\left[ \sqrt{a}\,\textrm{erf}(\sqrt{a \tau })+\frac{1}{\sqrt{\pi \tau }} \textrm{e}^{-a \tau }\right] ,\\ F^\prime _2(0, a, b, \tau ) &= {} \frac{1}{b}\left[ \textrm{e}^{-b \tau }\left\{ \sqrt{b+a}\,\textrm{erf} \,\sqrt{(b+a)\tau }+\frac{\textrm{e}^{-(b+a) \tau }}{\sqrt{\pi \tau }}\right\} +\sqrt{a}\,\textrm{erf}(\sqrt{a\tau })+\frac{\textrm{e}^{-a \tau }}{\sqrt{\pi \tau }}\right] ,\\ F^\prime _3(0, \alpha _0, a, b, \tau ) &= {} -\frac{\alpha ^2_0 \textrm{e}^{(\alpha _0^2-a)\tau }}{(\alpha _0^2-a-b)}\,\textrm{erfc}(\alpha _0 \sqrt{\tau })\\{} &\quad -\frac{\textrm{e}^{b \tau }}{(\alpha _0^2-a-b)}[(\alpha _0 \sqrt{a+b})\,\textrm{erf} \{\sqrt{(a+b)\tau }\}-(a+b)],\\ F^\prime _4(0, \alpha _0, a, b, \tau ){} & =-\frac{\alpha ^2_0 \textrm{e}^{(\alpha _0^2-a)\tau }}{(\alpha _0^2-a-b) (\alpha _0^2-a)}\,\textrm{erfc}(\alpha _0 \sqrt{\tau })\\{} &\qquad {} +\frac{\textrm{e}^{b \tau }}{b(\alpha _0^2-a-b)}[-\alpha _0 \sqrt{a+b}\,\textrm{erf} \{\sqrt{(a+b)\tau }\}+(a+b)]\\{} &\qquad {} -\frac{1}{b(\alpha _0^2-a)}[-\alpha _0 \sqrt{a}\,\textrm{erf} (\sqrt{a\tau })+a],\\ F^\prime _5(0, \alpha _0, a, b, c, \tau )& = \frac{\alpha ^3_0 \textrm{e}^{(\alpha _0^2-a)\tau }}{(\alpha _0^2-a+c) (\alpha _0^2-a-b)}\,\textrm{erfc}(\alpha _0 \sqrt{\tau })\\{} &\qquad -\frac{(a-c) \textrm{e}^{-c \tau }}{(b+c) (\alpha _0^2-a+c)}[{\sqrt{a-c}}\,\textrm{erf} \{\sqrt{(a-c)\tau }\}-\alpha _0]\\{} &\qquad +\frac{(a+b) \textrm{e}^{b \tau }}{(b+c) (\alpha _0^2-a-b)}[{\sqrt{a+b}}\,\textrm{erf} \{\sqrt{(a+b)\tau }\}-\alpha _0],\\ F^\prime _5(0, \alpha _0, a, 0, c, \tau ) &= \frac{\alpha ^3_0 \textrm{e}^{(\alpha _0^2-a)\tau }}{(\alpha _0^2-a+c) (\alpha _0^2-a)}\,\textrm{erfc}(\alpha _0 \sqrt{\tau })\\{} &\qquad -\frac{(a-c) \textrm{e}^{-c \tau }}{c (\alpha _0^2-a+c)}[{\sqrt{a-c}}\,\textrm{erf} \{\sqrt{(a-c)\tau }\}-\alpha _0]\\{} &\qquad +\frac{a}{c (\alpha _0^2-a)}[{\sqrt{a}}\,\textrm{erf} \{\sqrt{a\tau }\}-\alpha _0]. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karmakar, P., Das, S., Mahato, N. et al. Dynamics prediction using an artificial neural network for a weakly conductive ionized fluid streamed over a vibrating electromagnetic plate. Eur. Phys. J. Plus 139, 407 (2024). https://doi.org/10.1140/epjp/s13360-024-05197-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05197-w

Navigation