Skip to main content
Log in

Computational analysis of mixed convection Jeffrey fluid flow between rotating discs: incorporating magnetic field and thermal radiation via neural network modeling

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Researchers are increasingly interested in utilizing intelligent computing infrastructures to explore different fields of science and engineering, providing enhanced versions of soft computing-based methodologies for problem-solving. In this present investigation, we employ an artificial neural network utilizing the Levenberg–Marquardt technique to tackle the mixed convection flow of a Jeffrey fluid between rotating discs, subjected to a robust magnetic field and thermal radiation. The governing equations representing the given problem are converted into ordinary differential equations through appropriate mathematical transformations. The dataset required for training the backpropagation artificial neural network-based Levenberg–Marquardt technique model is generated using the spectral quasi-linearization method. The effectiveness of the proposed methodology is validated through various assessment metrics, including Mean Squared Error computation, analysis of error histograms, and regression analysis. The study explores the impact of magnetic, thermal radiation, and Jeffrey fluid parameters on velocity and temperature, presented visually for better understanding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Data will be provided upon request.

References

  1. T. Von Kármán, Uber laminare und turbulente Reibung. Z. Angew. Math. Mech. 1, 233–252 (1921)

    Article  Google Scholar 

  2. A. Guha, S. Sengupta, Analysis of von Kármán’s swirling flow on a rotating disc in Bingham fluids. Phys. Fluids. 28(1), (2016)

  3. R.A. Shah, A. Khan, M. Shuaib, On the study of flow between unsteady squeezing rotating discs with cross diffusion effects under the influence of variable magnetic field. Heliyon. 4, (2018)

  4. O. Pourmehran, M.M. Sarafraz, M. Rahimi-Gorji, D.D. Ganji, Rheological behaviour of various metal-based nano-fluids between rotating discs: a new insight. J. Taiwan Inst. Chem. Eng. 88, 37–48 (2018)

    Article  Google Scholar 

  5. F. Gao, J.W. Chew, Evaluation and application of advanced CFD models for rotating disc flows. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 235, 6847–6864 (2021)

    Article  Google Scholar 

  6. R. Agarwal, S. Chakraborty, Analytics with blood on hybrid paper-rotating disc device. Sens. Actuators Rep. 4, 100122 (2022)

    Article  Google Scholar 

  7. U. Ali, H. Khan, M. Bilal, M. Usman, M. Shuaib, T. Gul, Motile microorganisms hybrid nanoliquid flow with the influence of activation energy and heat source over a rotating disc. Nanotechnology 34, 425404 (2023)

    Article  ADS  Google Scholar 

  8. T. Hayat, N. Ali, Peristaltic motion of a Jeffrey fluid under the effect of a magnetic field in a tube. Commun. Nonlinear Sci. Numer. Simul. 13, 1343–1352 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  9. M. Kothandapani, S. Srinivas, Peristaltic transport of a Jeffrey fluid under the effect of magnetic field in an asymmetric channel. Int. J. Non-Linear Mech. 43(9), 915–924 (2008)

    Article  ADS  Google Scholar 

  10. R. Ellahi, S.U. Rahman, S. Nadeem, Blood flow of Jeffrey fluid in a catherized tapered artery with the suspension of nanoparticles. Phys. Lett. A. 378, 2973–2980 (2014)

    Article  ADS  Google Scholar 

  11. S.U. Rahman, R. Ellahi, S. Nadeem, Q.M.Z. Zia, Simultaneous effects of nanoparticles and slip on Jeffrey fluid through tapered artery with mild stenosis. J. Mol. Liq. 218, 484–493 (2016)

    Article  Google Scholar 

  12. M. Nazeer, F. Hussain, M.O. Ahmad, S. Saeed, M.I. Khan, S. Kadry, Y.-M. Chu, Multi-phase flow of Jeffrey Fluid bounded within magnetized horizontal surface. Surf. Interfaces 22, 100846 (2021)

    Article  Google Scholar 

  13. M.M. Bhatti, S. Jun, C.M. Khalique, A. Shahid, L. Fasheng, M.S. Mohamed, Lie group analysis and robust computational approach to examine mass transport process using Jeffrey fluid model. Appl. Math. Comput. 421, 126936 (2022)

    MathSciNet  Google Scholar 

  14. M. Ijaz Khan, A. Abbasi, S. Danish, W. Farooq, Computational analysis of cilia-mediated flow dynamics of Jeffrey nanofluid in physiologically realistic geometries. Phys. Fluids. 35, (2023)

  15. S. Sapna, A. Tamilarasi, M.P. Kumar, et al. Backpropagation learning algorithm based on Levenberg Marquardt Algorithm. Comp. Sci. Inf. Technol. (CS IT) 2, 393–398 (2012)

    Google Scholar 

  16. M. Sheikholeslami, M.B. Gerdroodbary, R. Moradi, A. Shafee, Z. Li, Application of neural network for estimation of heat transfer treatment of Al2O3-H2O nanofluid through a channel. Comput. Methods Appl. Mech. Eng. 344, 1–12 (2019)

    Article  ADS  Google Scholar 

  17. O. Acikgoz, A.B. Çolak, M. Camci, Y. Karakoyun, A.S. Dalkilic, Machine learning approach to predict the heat transfer coefficients pertaining to a radiant cooling system coupled with mixed and forced convection. Int. J. Therm. Sci. 178, 107624 (2022)

    Article  Google Scholar 

  18. R.P. Sharma, J.K. Madhukesh, S. Shukla, B.C. Prasannakumara, Numerical and Levenberg–Marquardt backpropagation neural networks computation of ternary nanofluid flow across parallel plates with Nield boundary conditions. Eur. Phys. J. Plus. 138, 63 (2023)

    Article  Google Scholar 

  19. G.B. Reddy, S. Sreenadh, R.H. Reddy, Flow of a Jeffrey fluid between torsionally oscillating disks. Ain Shams Eng. 6, 355–362 (2015)

    Article  Google Scholar 

  20. K. Kaladhar, D. Srinivasacharya, Mixed convection flow of couple stress fluid between rotating discs with chemical reaction and double diffusion effects. Nonlinear Eng. 5(4), 245–254 (2016)

    Article  ADS  Google Scholar 

  21. M.M. Almalki, E.S. Alaidarous, D.A. Maturi, M.A.Z. Raja, A Levenberg–Marquardt backpropagation neural network for the numerical treatment of squeezing flow with heat transfer model. IEEE Access 8, 227340–227348 (2020)

    Article  Google Scholar 

  22. J.L. Aljohani, E.S. Alaidarous, M.A.Z. Raja, Backpropagation of Levenberg Marquardt artificial neural networks for wire coating analysis in the bath of Sisko fluid. Ain Shams Eng. J. 12(4), 4133–4143 (2021)

    Article  Google Scholar 

  23. V. Leela, B.C. Prasannakumara, B. Shilpa, R.G. Reddy, Computational analysis of ohmic and viscous dissipation effects on MHD mixed convection flow in a vertical channel with linearly varying wall temperatures. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 09544089221080669 (2022)

  24. K. Kaladhar, R. Mahla, Entropy analysis of natural convection Jeffrey fluid flow through a vertical channel with an inclined magnetic field effect under Navier-slip conditions. Eur. Phys. J. Plus. 138, 1–14 (2023)

    Article  Google Scholar 

  25. L.M. Saini, M.K. Soni, Artificial neural network based peak load forecasting using Levenberg–Marquardt and quasi-Newton methods. IEE Proc. Gener. Transm. Distrib. 149, 578–584 (2002)

    Article  Google Scholar 

  26. M. Shoaib, M.A.Z. Raja, W. Jamshed, K.S. Nisar, I. Khan, I. Farhat, Intelligent computing Levenberg Marquardt approach for entropy optimized single-phase comparative study of second grade nanofluidic system. Int. Commun. Heat Mass Transf. 127, 105544 (2021)

    Article  Google Scholar 

  27. M.A. Abdelkareem, B. Soudan, M.S. Mahmoud, E.T. Sayed, M.N. AlMallahi, A. Inayat, M. Al-Radi, A.G. Olabi, Progress of artificial neural networks applications in hydrogen production. Chem. Eng. Res. Des. 182, 66–86 (2022)

    Article  Google Scholar 

  28. S. Nandy, M. Adhikari, V. Balasubramanian, V.G. Menon, X. Li, M. Zakarya, An intelligent heart disease prediction system based on swarm-artificial neural network. Neural Comput. Appl. 35, 14723–14737 (2023)

    Article  Google Scholar 

Download references

Acknowledgements

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Kaladhar.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahla, R., Kaladhar, K. Computational analysis of mixed convection Jeffrey fluid flow between rotating discs: incorporating magnetic field and thermal radiation via neural network modeling. Eur. Phys. J. Plus 139, 344 (2024). https://doi.org/10.1140/epjp/s13360-024-05128-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05128-9

Navigation