Skip to main content
Log in

Control landscapes for high-fidelity generation of C-NOT and C-PHASE gates with coherent and environmental driving

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

High-fidelity generation of two-qubit gates is important for quantum computation, since such gates are components of popular universal sets of gates. Here, we consider the problem of high-fidelity generation of two-qubit C-NOT and C-PHASE (with a detailed study of C–Z) gates in presence of the environment. We consider the general situation when qubits are manipulated by coherent and incoherent controls; the latter is used to induce generally time-dependent decoherence rates. For estimating efficiency of optimization methods for high-fidelity generation of these gates, we study quantum control landscapes which describe the behavior of the fidelity as a function of the controls. For this, we generate and analyze the statistical distributions of best objective values obtained by incoherent GRadient Ascent Pulse Engineering (inGRAPE) approach. We also apply inGRAPE and a dual annealing algorithm (DAA) based on a stochastic zeroth-order method to numerically estimate minimal infidelity values. The results are different from the case of single-qubit gates and indicate a smooth trap-free behavior of the fidelity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

GKSL:

Gorini–Kossakowski–Sudarshan–Lindblad

C-NOT:

Controlled NOT (quantum gate)

C-PHASE:

Controlled PHASE (quantum gate)

C-Z:

Controlled Z (quantum gate)

GRK approach:

The approach developed by M.Y. Goerz, D.M. Reich, and C.P. Koch in [44, 45] for generating unitary gates under dissipative evolution, where only three special initial density matrices are used in contrast to the complete basis

DAA:

Dual Annealing Algorithm

inGRAPE:

Incoherent GRadient Ascent Pulse Engineering

References

  1. A. Acín, I. Bloch, H. Buhrman, T. Calarco, C. Eichler, J. Eisert, D. Esteve, N. Gisin, S.J. Glaser, F. Jelezko, S. Kuhr, M. Lewenstein, M.F. Riedel, P.O. Schmidt, R. Thew, A. Wallraff, I. Walmsley, F.K. Wilhelm, The quantum technologies roadmap: a European community view. New J. Phys. 20(8), 080201 (2018). https://doi.org/10.1088/1367-2630/aad1ea

    Article  Google Scholar 

  2. W.P. Schleich, K.S. Ranade, C. Anton, M. Arndt, M. Aspelmeyer, M. Bayer, G. Berg, T. Calarco, H. Fuchs, E. Giacobino, M. Grassl, P. Hänggi, W.M. Heckl, I.-V. Hertel, S. Huelga, F. Jelezko, B. Keimer, J.P. Kotthaus, G. Leuchs, N. Lütkenhaus, U. Maurer, T. Pfau, M.B. Plenio, E.M. Rasel, O. Renn, C. Silberhorn, J. Schiedmayer, D. Schmitt-Landsiedel, K. Schönhammer, A. Ustinov, P. Walther, H. Weinfurter, E. Welzl, R. Wiesendanger, S. Wolf, A. Zeilinger, P. Zoller, Quantum technology: from research to application. Appl. Phys. B 122(5), 130 (2016). https://doi.org/10.1007/s00340-016-6353-8

    Article  ADS  Google Scholar 

  3. M. Nielsen, I. Chuang. Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, Cambridge (2010). https://doi.org/10.1017/CBO9780511976667

  4. A. Yu, Kitaev, A. Shen, M.N. Vyalyi, Classical and Quantum Computation / Translated from the Russian by L.J. Senechal. American Mathematical Soc., Providence, Rhode Island (2002). https://doi.org/10.1090/gsm/047

  5. K.A. Valiev, Quantum computers and quantum computations. Phys.-Uspekhi 48(1), 1–36 (2005). https://doi.org/10.1070/PU2005v048n01ABEH002024

    Article  ADS  Google Scholar 

  6. D. Gottesman, The Heisenberg representation of quantum computers (1998). https://doi.org/10.48550/arXiv.quant-ph/9807006

  7. V.N. Petruhanov, A.N. Pechen, Quantum control landscapes for generation of \({H}\) and \({T}\) gates in an open qubit with both coherent and environmental drive. Photonics 10(11), 1200 (2023). https://doi.org/10.3390/photonics10111200

    Article  Google Scholar 

  8. D. Aharonov, A. Kitaev, N. Nisan, Quantum circuits with mixed states. In Proc. of the Thirtieth Annual ACM Symposium on Theory of Computing, pages 20–30, New York, NY, USA. Association for Computing Machinery (1998). https://doi.org/10.1145/276698.276708

  9. V.E. Tarasov, Quantum computer with mixed states and four-valued logic. J. Phys. A: Math. Gen. 35(25), 5207–5235 (2002). https://doi.org/10.1088/0305-4470/35/25/305

    Article  ADS  MathSciNet  Google Scholar 

  10. J.I. Cirac, P. Zoller, Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091–4094 (1995). https://doi.org/10.1103/PhysRevLett.74.4091

    Article  ADS  Google Scholar 

  11. P. Facchi, V. Gorini, G. Marmo, S. Pascazio, E.C.G. Sudarshan, Quantum Zeno dynamics. Phys. Lett. A 275(1–2), 12–19 (2000). https://doi.org/10.1016/S0375-9601(00)00566-1

    Article  ADS  MathSciNet  Google Scholar 

  12. P. Facchi, H. Nakazato, S. Pascazio, From the quantum Zeno to the inverse quantum Zeno effect. Phys. Rev. Lett. 86(13), 2699–2703 (2001). https://doi.org/10.1103/PhysRevLett.86.2699

    Article  ADS  Google Scholar 

  13. S. Mancini, R. Bonifacio, Quantum Zeno-like effect due to competing decoherence mechanisms. Phys. Rev. A 64(4), 042111 (2001). https://doi.org/10.1103/PhysRevA.64.042111

    Article  ADS  Google Scholar 

  14. S. Tasaki, A. Tokuse, P. Facchi, S. Pascazio, Control of decoherence: dynamical decoupling versus quantum Zeno effect: a case study for trapped ions. Int. J. Quant. Chem. 98(2), 160–172 (2004). https://doi.org/10.1002/qua.10870

    Article  Google Scholar 

  15. A. Pechen, N. Il’in, F. Shuang, H. Rabitz, Quantum control by von Neumann measurements. Phys. Rev. A 74(5), 052102 (2006). https://doi.org/10.1103/PhysRevA.74.052102

    Article  ADS  Google Scholar 

  16. S. Harraz, S. Cong, J.J. Nieto, Quantum state and entanglement protection in finite temperature environment by quantum feed-forward control. Eur. Phys. J. Plus 136(8), 851 (2021). https://doi.org/10.1140/epjp/s13360-021-01861-7

    Article  Google Scholar 

  17. L. Hou, Y. Shi, C. Wang, The quantum speed limit time of a qubit in amplitude-damping channel with weak measurement controls. Eur. Phys. J. Plus 138(5), 440 (2023). https://doi.org/10.1140/epjp/s13360-023-04028-8

    Article  Google Scholar 

  18. C.P. Koch, U. Boscain, T. Calarco, G. Dirr, S. Filipp, S.J. Glaser, R. Kosloff, S. Montangero, T. Schulte-Herbrüggen, D. Sugny, F.K. Wilhelm, Quantum optimal control in quantum technologies. Strategic report on current status, visions and goals for research in Europe. EPJ Quant. Technol. 9, 19 (2022). https://doi.org/10.1140/epjqt/s40507-022-00138-x

    Article  Google Scholar 

  19. D.J. Tannor, Introduction to Quantum Mechanics: A Time Dependent Perspective. Univ. Science Books, Sausilito, CA, (2007). URL: https://uscibooks.aip.org/books/introduction-to-quantum-mechanics-a-time-dependent-perspective/

  20. V. Letokhov, Laser Control of Atoms and Molecules. Oxford Univ. Press (2007). URL: https://global.oup.com/academic/product/laser-control-of-atoms-and-molecules-9780199697137

  21. A.L. Fradkov, Cybernetical Physics: From Control of Chaos to Quantum Control. Springer, Berlin, Heidelberg (2007). https://doi.org/10.1007/978-3-540-46277-4

  22. C. Brif, R. Chakrabarti, H. Rabitz, Control of quantum phenomena: Past, present and future. New J. Phys. 12, 075008 (2010). https://doi.org/10.1088/1367-2630/12/7/075008

    Article  ADS  Google Scholar 

  23. S. Mancini, V.I. Man’ko, H.M. Wiseman, Special issue on quantum control. J. Opt. B Quant. Semiclass. Opt. 7(10), S177–S177 (2005). https://doi.org/10.1088/1464-4266/7/10/E01

    Article  ADS  Google Scholar 

  24. D.Y. Dong, I.R. Petersen, Quantum control theory and applications: a survey. IET Control Theory Appl. 4, 2651–2671 (2010). https://doi.org/10.1049/iet-cta.2009.0508

    Article  MathSciNet  Google Scholar 

  25. M. Shapiro, P. Brumer, Quantum Control of Molecular Processes. Second, Revised and Enlarged Edition. Wiley–VCH Verlag, Weinheim (2012). https://doi.org/10.1002/9783527639700

  26. J. Gough, Principles and applications of quantum control engineering. Phil. Trans. R. Soc. A 370, 5241–5258 (2012). https://doi.org/10.1098/rsta.2012.0370

    Article  ADS  MathSciNet  Google Scholar 

  27. S. Cong, Control of Quantum Systems: Theory and Methods. John Wiley & Sons, Hoboken, NJ (2014)

    Book  Google Scholar 

  28. W. Dong, R. Wu, X. Yuan, C. Li, T.-J. Tarn, The modelling of quantum control systems. Sci. Bull. 60, 1493–1508 (2015). https://doi.org/10.1007/s11434-015-0863-3

    Article  Google Scholar 

  29. C.P. Koch, Controlling open quantum systems: Tools, achievements, and limitations. J. Phys.: Condens. Matter 28(21), 213001 (2016). https://doi.org/10.1088/0953-8984/28/21/213001

    Article  ADS  Google Scholar 

  30. D. D’Alessandro, Introduction to Quantum Control and Dynamics. Chapman & Hall, Boca Raton, 2nd edition (2021). https://doi.org/10.1201/9781003051268

  31. I. Kuprov, Spin: From Basic Symmetries to Quantum Optimal Control. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-05607-9

  32. L. Giannelli, P. Sgroi, J. Brown et al., A tutorial on optimal control and reinforcement learning methods for quantum technologies. Phys. Lett. A 434, 128054 (2022). https://doi.org/10.1016/j.physleta.2022.128054

    Article  MathSciNet  Google Scholar 

  33. D.I. Bondar, A.N. Pechen, Uncomputability and complexity of quantum control. Sci. Rep. 10(11), 1–10 (2020). https://doi.org/10.1038/s41598-019-56804-1

    Article  Google Scholar 

  34. U. Boscain, M. Sigalotti, D. Sugny, Introduction to the Pontryagin maximum principle for quantum optimal control. PRX Quant. 2, 030203 (2021). https://doi.org/10.1103/PRXQuantum.2.030203

    Article  ADS  Google Scholar 

  35. N. Khaneja, T. Reiss, C. Kehlet, T. Schulte-Herbrüggen, S.J. Glaser, Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. J. Magn. Reson. 172(2), 296–305 (2005). https://doi.org/10.1016/j.jmr.2004.11.004

    Article  ADS  Google Scholar 

  36. T. Schulte-Herbrüggen, A. Spörl, N. Khaneja, S.J. Glaser, Optimal control for generating quantum gates in open dissipative systems. J. Phys. B 44, 154013 (2011). https://doi.org/10.1088/0953-4075/44/15/154013

    Article  ADS  Google Scholar 

  37. D. Lucarelli, Quantum optimal control via gradient ascent in function space and the time-bandwidth quantum speed limit. Phys. Rev. A 97(6), 062346 (2018). https://doi.org/10.1103/PhysRevA.97.062346

    Article  ADS  Google Scholar 

  38. V.N. Petruhanov, A.N. Pechen, GRAPE optimization for open quantum systems with time-dependent decoherence rates driven by coherent and incoherent controls. J. Phys. A: Math. Theor. 56(30), 305303 (2023). https://doi.org/10.1088/1751-8121/ace13f

    Article  MathSciNet  Google Scholar 

  39. D.L. Goodwin, M.S. Vinding, Accelerated Newton-Raphson GRAPE methods for optimal control. Phys. Rev. Res. 5(1), L012042 (2023). https://doi.org/10.1103/PhysRevResearch.5.L012042

    Article  Google Scholar 

  40. T. Schulte-Herbrüggen, S.J. Glaser, G. Dirr, U. Helmke, Gradient flows for optimization in quantum information and quantum dynamics: foundations and applications. Rev. Math. Phys. 22, 597–667 (2010). https://doi.org/10.1142/S0129055X10004053

    Article  MathSciNet  Google Scholar 

  41. D.J. Tannor, V. Kazakov, V. Orlov, Control of photochemical branching: novel procedures for finding optimal pulses and global upper bounds, pages 347–360. Springer US, Boston, MA (1992). https://doi.org/10.1007/978-1-4899-2326-4_24

  42. O.V. Baturina, O.V. Morzhin, Optimal control of the spin system on a basis of the global improvement method. Autom. Remote Control 72(6), 1213–1220 (2011). https://doi.org/10.1134/S0005117911060075

    Article  MathSciNet  Google Scholar 

  43. G. Jäger, D.M. Reich, M.H. Goerz, C.P. Koch, U. Hohenester, Optimal quantum control of Bose-Einstein condensates in magnetic microtraps: comparison of GRAPE and Krotov optimization schemes. Phys. Rev. A 90, 033628 (2014). https://doi.org/10.1103/PhysRevA.90.033628

    Article  ADS  Google Scholar 

  44. M.H. Goerz, D.M. Reich, C.P. Koch, Optimal control theory for a unitary operation under dissipative evolution. New J. Phys. 16, 055012 (2014). https://doi.org/10.1088/1367-2630/16/5/055012

    Article  ADS  MathSciNet  Google Scholar 

  45. M.H. Goerz, D.M. Reich, C.P. Koch, Corrigendum: Optimal control theory for a unitary operation under dissipative evolution (2014 new j. phys.16 055012). New J. Phys. 23(3), 039501 (2021). https://doi.org/10.1088/1367-2630/abe970

    Article  ADS  MathSciNet  Google Scholar 

  46. D. Basilewitsch, F. Cosco, N. Lo Gullo, M. Möttönen, T. Ala-Nissilä, C.P. Koch, S. Maniscalco, Reservoir engineering using quantum optimal control for qubit reset. New J. Phys. 21, 093054 (2019). https://doi.org/10.1088/1367-2630/ab41ad

    Article  ADS  MathSciNet  Google Scholar 

  47. O.V. Morzhin, A.N. Pechen, Krotov method for optimal control of closed quantum systems. Russ. Math. Surv. 74(5), 851–908 (2019). https://doi.org/10.1070/RM9835

    Article  MathSciNet  Google Scholar 

  48. M.E. Fonseca, F.F. Fanchini, E. de Lima, L.K. Castelano, Effectiveness of the Krotov method in controlling open quantum systems, J. Phys. A: Math. Theor. 56, 495303 (2023). https://doi.org/10.1088/1751-8121/ad0b5b

    Article  ADS  Google Scholar 

  49. J. Gough, V.P. Belavkin, O.G. Smolyanov, Hamilton-Jacobi-Bellman equations for quantum optimal feedback control. J. Opt. B Quant. Semiclass. Opt. 7(10), S237–S244 (2005). https://doi.org/10.1088/1464-4266/7/10/006

    Article  ADS  MathSciNet  Google Scholar 

  50. T. Caneva, T. Calarco, S. Montangero, Chopped random-basis quantum optimization. Phys. Rev. A 84, 022326 (2011). https://doi.org/10.1103/PhysRevA.84.022326

    Article  ADS  Google Scholar 

  51. M.M. Müller, R.S. Said, F. Jelezko, T. Calarco, S. Montangero, One decade of quantum optimal control in the chopped random basis. Rep. Prog. Phys. 85, 076001 (2022). https://doi.org/10.1088/1361-6633/ac723c

    Article  ADS  MathSciNet  Google Scholar 

  52. R. Eitan, M. Mundt, D.J. Tannor, Optimal control with accelerated convergence: Combining the Krotov and quasi-Newton methods. Phys. Rev. A 83, 053426 (2011). https://doi.org/10.1103/PhysRevA.83.053426

    Article  ADS  Google Scholar 

  53. P. De Fouquieres, S.G. Schirmer, S.J. Glaser, I. Kuprov, Second order gradient ascent pulse engineering. J. Magn. Reson. 212(2), 412–417 (2011). https://doi.org/10.1016/j.jmr.2011.07.023

    Article  ADS  Google Scholar 

  54. R.S. Judson, H. Rabitz, Teaching lasers to control molecules. Phys. Rev. Lett. 68, 1500–1503 (1992). https://doi.org/10.1103/PhysRevLett.68.1500

    Article  ADS  Google Scholar 

  55. A. Pechen, H. Rabitz, Teaching the environment to control quantum systems. Phys. Rev. A 73(6), 062102 (2006). https://doi.org/10.1103/PhysRevA.73.062102

    Article  ADS  Google Scholar 

  56. Y. Maday, G. Turinici, New formulations of monotonically convergent quantum control algorithms. J. Chem. Phys. 118(18), 8191–8196 (2003). https://doi.org/10.1063/1.1564043

    Article  ADS  Google Scholar 

  57. H.M. Wiseman, G.J. Milburn, Quantum theory of optical feedback via homodyne detection. Phys. Rev. Lett. 70(5), 548–551 (1993). https://doi.org/10.1103/PhysRevLett.70.548

    Article  ADS  Google Scholar 

  58. A.C. Doherty, S. Habib, K. Jacobs, H. Mabuchi, S.M. Tan, Quantum feedback control and classical control theory. Phys. Rev. A 62(1), 012105 (2000). https://doi.org/10.1103/PhysRevA.62.012105

    Article  ADS  Google Scholar 

  59. S. Lloyd, L. Viola, Engineering quantum dynamics. Phys. Rev. A 65(1), 010101 (2001). https://doi.org/10.1103/PhysRevA.65.010101

    Article  ADS  MathSciNet  Google Scholar 

  60. R. Van Handel, J.K. Stockton, H. Mabuchi, Feedback control of quantum state reduction. IEEE Trans. Autom. Control 50(6), 768–780 (2005). https://doi.org/10.1109/TAC.2005.849193

    Article  MathSciNet  Google Scholar 

  61. S. Mancini, H.M. Wiseman, Optimal control of entanglement via quantum feedback. Phys. Rev. A 75(1), 012330 (2007). https://doi.org/10.1103/PhysRevA.75.012330

    Article  ADS  MathSciNet  Google Scholar 

  62. J.E. Gough, Principles and applications of quantum control engineering. Philos. Trans. R. Soc. A 370(1979), 5241–5258 (2012). https://doi.org/10.1098/rsta.2012.0370

    Article  ADS  MathSciNet  Google Scholar 

  63. S.G. Schirmer, E.A. Jonckheere, F.C. Langbein, Design of feedback control laws for information transfer in spintronics networks. IEEE Trans. Autom. Control 63(8), 2523–2536 (2018). https://doi.org/10.1109/TAC.2017.2777187

    Article  MathSciNet  Google Scholar 

  64. D. Dong, C. Chen, T.-J. Tarn, A. Pechen, H. Rabitz, Incoherent control of quantum systems with wavefunction-controllable subspaces via quantum reinforcement learning. IEEE Trans. Syst. Man. Cybern. B Cybern. 38(4), 957–962 (2008)

    Article  Google Scholar 

  65. M.Y. Niu, S. Boixo, V. Smelyanskiy, H. Neven, Universal quantum control through deep reinforcement learning. npj Quant. Inform. 5, 33 (2019). https://doi.org/10.1038/s41534-019-0141-3

    Article  ADS  Google Scholar 

  66. M. Dalgaard, F. Motzoi, J. Sherson, Predicting quantum dynamical cost landscapes with deep learning. Phys. Rev. A 105, 012402 (2022). https://doi.org/10.1103/PhysRevA.105.012402

    Article  ADS  MathSciNet  Google Scholar 

  67. O. Shindi, Q. Yu, D. Dong, A modified deep q-learning algorithm for control of two-qubit systems. Proc. of 2021 IEEE Int. Conf. on Systems, Man, and Cybernetics (SMC), pages 3454–3459 (2021). https://doi.org/10.1109/SMC52423.2021.9658732

  68. M.S. Anan’evskii, A.L. Fradkov, Control of the observables in the finite-level quantum systems. Autom. Remote Control 66, 734–745 (2005). https://doi.org/10.1007/s10513-005-0117-y

    Article  MathSciNet  Google Scholar 

  69. A. Pechen, S. Borisenok, Energy transfer in two-level quantum systems via speed gradient-based algorithm. IFAC-PapersOnLine 48(11), 446–450 (2015). https://doi.org/10.1016/j.ifacol.2015.09.226

    Article  Google Scholar 

  70. J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, S. Lloyd, Quantum machine learning. Nature 549(7671), 195–202 (2017). https://doi.org/10.1038/nature23474

    Article  ADS  Google Scholar 

  71. O.V. Morzhin, A.N. Pechen, Generation of density matrices for two qubits using coherent and incoherent controls. Lobachevskii J. Math. 42(10), 2401–2412 (2021). https://doi.org/10.1134/S1995080221100176

    Article  MathSciNet  Google Scholar 

  72. S. Khari, Z. Rahmani, A. Daeichian, H. Mehri-Dehnavi, State transfer and maintenance for non-Markovian open quantum systems in a hybrid environment via Lyapunov control method. Eur. Phys. J. Plus 137(5), 533 (2022). https://doi.org/10.1140/epjp/s13360-022-02713-8

    Article  Google Scholar 

  73. M. Rossignolo, T. Reisser, A. Marshall, P. Rembold, A. Pagano, P.J. Vetter, R.S. Said, M.M. Müller, F. Motzoi, T. Calarco, F. Jelezko, S. Montangero, QuOCS: The quantum optimal control suite. Comput. Phys. Commun. 291, 108782 (2023). https://doi.org/10.1016/j.cpc.2023.108782

    Article  Google Scholar 

  74. E. Assémat, M. Lapert, Y. Zhang, M. Braun, S.J. Glaser, D. Sugny, Simultaneous time-optimal control of the inversion of two spin-\(\frac{1}{2}\) particles. Phys. Rev. A 82(1), 013415 (2010). https://doi.org/10.1103/PhysRevA.82.013415

    Article  ADS  Google Scholar 

  75. M. Rafiee, A. Nourmandipour, S. Mancini, Optimal feedback control of two-qubit entanglement in dissipative environments. Phys. Rev. A 94(1), 012310 (2016). https://doi.org/10.1103/PhysRevA.94.012310

    Article  ADS  Google Scholar 

  76. M. Rafiee, A. Nourmandipour, S. Mancini, Universal feedback control of two-qubit entanglement. Phys. Rev. A 96(1), 012340 (2017). https://doi.org/10.1103/PhysRevA.96.012340

    Article  ADS  Google Scholar 

  77. F. Preti, T. Calarco, J.M. Torres, J.Z. Bernád, Optimal two-qubit gates in recurrence protocols of entanglement purification. Phys. Rev. A 106(2), 022422 (2022). https://doi.org/10.1103/PhysRevA.106.022422

    Article  ADS  MathSciNet  Google Scholar 

  78. B. Mojaveri, A. Dehghani, J. Taghipour, Control of entanglement, single excited-state population and memory-assisted entropic uncertainty of two qubits moving in a cavity by using a classical driving field. Eur. Phys. J. Plus 137(9), 1065 (2022). https://doi.org/10.1140/epjp/s13360-022-03230-4

    Article  Google Scholar 

  79. M.A. Jafarizadeh, F. Naghdi, M.R. Bazrafkan, Time optimal realization of two-qubit entangler. Eur. Phys. J. Plus 137(6), 720 (2022). https://doi.org/10.1140/epjp/s13360-022-02904-3

    Article  Google Scholar 

  80. O.V. Morzhin, A.N. Pechen, Optimal state manipulation for a two-qubit system driven by coherent and incoherent controls. Quant. Inf. Process. 22, 241 (2023). https://doi.org/10.1007/s11128-023-03946-x

    Article  ADS  MathSciNet  Google Scholar 

  81. S. Ashhab, P.C. De Groot, F. Nori, Speed limits for quantum gates in multiqubit systems. Phys. Rev. A 85(5), 052327 (2012). https://doi.org/10.1103/PhysRevA.85.052327

    Article  ADS  Google Scholar 

  82. M.M. Taddei, B.M. Escher, L. Davidovich, R.L. De Matos Filho, Quantum speed limit for physical processes. Phys. Rev. Lett. 110(5), 050402 (2013). https://doi.org/10.1103/PhysRevLett.110.050402

    Article  ADS  Google Scholar 

  83. H.A. Rabitz, M.M. Hsieh, C.M. Rosenthal, Quantum optimally controlled transition landscapes. Science 303(5666), 1998–2001 (2004). https://doi.org/10.1126/science.1093649

    Article  ADS  Google Scholar 

  84. T.-S. Ho, H. Rabitz, Why do effective quantum controls appear easy to find? J. Photochem. Photobiol. A: Chem. 180(3), 226–240 (2006). https://doi.org/10.1016/j.jphotochem.2006.03.038

    Article  Google Scholar 

  85. K.W. Moore, R. Chakrabarti, G. Riviello, H. Rabitz, Search complexity and resource scaling for the quantum optimal control of unitary transformations. Phys. Rev. A 83, 012326 (2011). https://doi.org/10.1103/PhysRevA.83.012326

    Article  ADS  Google Scholar 

  86. A.N. Pechen, D.J. Tannor, Are there traps in quantum control landscapes? Phys. Rev. Lett. 106(12), 120402 (2011). https://doi.org/10.1103/PhysRevLett.106.120402

    Article  ADS  Google Scholar 

  87. A. Pechen, N. Il’in, Trap-free manipulation in the Landau-Zener system. Phys. Rev. A 86(5), 052117 (2012). https://doi.org/10.1103/PhysRevA.86.052117

    Article  ADS  Google Scholar 

  88. A.N. Pechen, D.J. Tannor, Quantum control landscape for a Lambda-atom in the vicinity of second-order traps. Israel J. Chem. 52(5), 467–472 (2012). https://doi.org/10.1002/ijch.201100165

    Article  Google Scholar 

  89. P. De Fouquieres, S.G. Schirmer, A closer look at quantum control landscapes and their implication for control optimization. Infinite Dimens. Anal. Quant. Prob. Relat. Top. 16(3), 1350021 (2013). https://doi.org/10.1142/S0219025713500215

    Article  MathSciNet  Google Scholar 

  90. M. Larocca, P.M. Poggi, D.A. Wisniacki, Quantum control landscape for a two-level system near the quantum speed limit. J. Phys. A: Math. Theor. 51(38), 385305 (2018). https://doi.org/10.1088/1751-8121/aad657

    Article  ADS  MathSciNet  Google Scholar 

  91. D.V. Zhdanov, Comment on ‘Control landscapes are almost always trap free: a geometric assessment’. J. Phys. A: Math. Theor. 51, 508001 (2018). https://doi.org/10.1088/1751-8121/aaecf6

    Article  MathSciNet  Google Scholar 

  92. B. Russell, R. Wu, H. Rabitz, Reply to comment on ‘Control landscapes are almost always trap free: a geometric assessment’. J. Phys. A: Math. Theor. 51, 508002 (2018). https://doi.org/10.1088/1751-8121/aaecf2

    Article  Google Scholar 

  93. B. Volkov, O. Morzhin, A. Pechen, Quantum control landscape for ultrafast generation of single-qubit phase shift quantum gates. J. Phys. A: Math. Theor. 54, 215303 (2021). https://doi.org/10.1088/1751-8121/abf45d

    Article  ADS  MathSciNet  Google Scholar 

  94. A. Oza, A. Pechen, J. Dominy, V. Beltrani, K. Moore, H. Rabitz, Optimization search effort over the control landscapes for open quantum systems with Kraus-map evolution. J. Phys. A 42, 205305 (2009). https://doi.org/10.1088/1751-8113/42/20/205305

    Article  ADS  MathSciNet  Google Scholar 

  95. B.O. Volkov, A.N. Pechen, Higher-order traps for some strongly degenerate quantum control systems. Russ. Math. Surv. 78(2), 390–392 (2023). https://doi.org/10.4213/rm10069e

    Article  MathSciNet  Google Scholar 

  96. M. Elovenkova, A. Pechen, Control landscape of measurement-assisted transition probability for a three-level quantum system with dynamical symmetry. Quant. Rep. 5(3), 526–545 (2023). https://doi.org/10.3390/quantum5030035

    Article  Google Scholar 

  97. SciPy: the function scipy.optimize.dual_annealing (2023). URL: https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.dual_annealing.html (access: Dec. 29)

  98. S. Kirkpatrick, C.D. Gelatt Jr., M.P. Vecchi, Optimization by simulated annealing. Science 220(4598), 671–680 (1983). https://doi.org/10.1126/science.220.4598.671

    Article  ADS  MathSciNet  Google Scholar 

  99. C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 52, 479–487 (1988). https://doi.org/10.1007/BF01016429

    Article  ADS  MathSciNet  Google Scholar 

  100. C. Tsallis, D.A. Stariolo, Generalized simulated annealing. Phys. A: Stat. Mech. 233(1–2), 395–406 (1996). https://doi.org/10.1016/S0378-4371(96)00271-3

    Article  Google Scholar 

  101. I. Andricioaei, J.E. Straub, Generalized simulated annealing algorithms using Tsallis statistics: application to conformational optimization of a tetrapeptide. Phys. Rev. E 53(4), R3055(R) (1996). https://doi.org/10.1103/PhysRevE.53.R3055

    Article  ADS  Google Scholar 

  102. Y. Xiang, D.Y. Sun, W. Fan, X.G. Gong, Generalized simulated annealing algorithm and its application to the Thomson model. Phys. Lett. A 233(3), 216–220 (1997). https://doi.org/10.1016/S0375-9601(97)00474-X

    Article  ADS  Google Scholar 

  103. Y. Xiang, X.G. Gong, Efficiency of generalized simulated annealing. Phys. Rev. E 62(3), 4473 (2000). https://doi.org/10.1103/PhysRevE.62.4473

    Article  ADS  Google Scholar 

  104. V.V. Kozlov, O.G. Smolyanov, Mathematical structures related to the description of quantum states. Dokl. Math. 104(3), 365–368 (2021). https://doi.org/10.1134/S1064562421060119

    Article  MathSciNet  Google Scholar 

  105. P. Maity, M. Purkait, Implementation of a holonomic 3-qubit gate using Rydberg superatoms in a microwave cavity. Eur. Phys. J. Plus 137, 1299 (2022). https://doi.org/10.1140/epjp/s13360-022-03460-6

    Article  Google Scholar 

  106. R. Dann, A. Tobalina, R. Kosloff, Fast route to equilibration. Phys. Rev. A 101, 052102 (2020). https://doi.org/10.1103/PhysRevA.101.052102

    Article  ADS  MathSciNet  Google Scholar 

  107. H. Spohn, J. Lebowitz, Irreversible thermodynamics for quantum systems weakly coupled to thermal reservoirs. Adv. Chem. Phys. 38, 109–142 (1978). https://doi.org/10.1002/9780470142578.ch2

    Article  Google Scholar 

  108. A. Trushechkin, Unified Gorini-Kossakowski-Lindblad-Sudarshan quantum master equation beyond the secular approximation. Phys. Rev. A 103(6), 062226 (2021). https://doi.org/10.1103/PhysRevA.103.062226

    Article  ADS  MathSciNet  Google Scholar 

  109. A. Trushechkin, Quantum master equations and steady states for the ultrastrong-coupling limit and the strong-decoherence limit. Phys. Rev. A 106(4), 042209 (2022). https://doi.org/10.1103/PhysRevA.106.042209

    Article  ADS  MathSciNet  Google Scholar 

  110. A. Pechen, Engineering arbitrary pure and mixed quantum states. Phys. Rev. A 84(4), 042106 (2011). https://doi.org/10.1103/PhysRevA.84.042106

    Article  ADS  MathSciNet  Google Scholar 

  111. R. Wu, A. Pechen, C. Brif, H. Rabitz, Controllability of open quantum systems with Kraus-map dynamics. J. Phys. A 40, 5681–5693 (2007). https://doi.org/10.1088/1751-8113/40/21/015

    Article  ADS  MathSciNet  Google Scholar 

  112. W. Zhang, R. Saripalli, J. Leamer, R. Glasser, D. Bondar, All-optical input-agnostic polarization transformer via experimental Kraus-map control. Eur. Phys. J. Plus 137, 930 (2022). https://doi.org/10.1140/epjp/s13360-022-03104-9

    Article  Google Scholar 

  113. F.O. Laforge, M.S. Kirschner, H.A. Rabitz, Shaped incoherent light for control of kinetics: Optimization of up-conversion hues in phosphors. J. Chem. Phys. 149, 054201 (2018). https://doi.org/10.1063/1.5035077

    Article  ADS  Google Scholar 

  114. L.A. Pachón, J.D. Botero, P. Brumer, Open system perspective on incoherent excitation of light-harvesting systems. J. Phys. B: At. Mol. Opt. Phys. 5018, 184003 (2017). https://doi.org/10.1088/1361-6455/aa8696

    Article  ADS  Google Scholar 

  115. P. Brumer, Shedding (incoherent) light on quantum effects in light-induced biological processes. J. Phys. Chem. Lett. 9(18), 184003 (2017). https://doi.org/10.1021/acs.jpclett.8b00874

    Article  Google Scholar 

  116. S.V. Kozyrev, A.N. Pechen, Quantum feedback control in quantum photosynthesis. Phys. Rev. A 106(3), 032218 (2022). https://doi.org/10.1103/PhysRevA.106.032218

    Article  ADS  MathSciNet  Google Scholar 

  117. K. Kraus, A. Böhm, J.D. Dollard, W.H. Wootters, editors. States, Effects, and Operations: Fundamental Notions of Quantum Theory. Springer (1983). https://doi.org/10.1007/3-540-12732-1

  118. A.S. Holevo, Quantum Systems, Channels, Information: A Mathematical Introduction. 2nd Rev. and Expanded Ed. De Gruyter, Berlin, Boston (2019). https://doi.org/10.1515/9783110642490

  119. G.G. Amosov, On inner geometry of noncommutative operator graphs. Eur. Phys. J. Plus 135(10), 865 (2020). https://doi.org/10.1140/epjp/s13360-020-00871-1

    Article  Google Scholar 

  120. A.F. Filippov, Differential Equations with Discontinuous Righthand Sides / Transl. from the edition published in Russian in 1985. Math. Appl. (Soviet Ser.), Vol. 18. Kluwer Acad. Publ., Dordrecht (1988). https://doi.org/10.1007/978-94-015-7793-9

  121. A.A. Agrachev, Y.L. Sachkov, Control Theory from the Geometric Viewpoint. Springer (2004). https://doi.org/10.1007/978-3-662-06404-7

Download references

Funding

The results about generation of C–Z gate were performed within the federal academic leadership program “Priority 2030” (MISIS Strategic Project Quantum Internet). The other results were performed within Project No. 075-15-2020-788 of the Ministry of Science and Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Pechen.

Ethics declarations

Conflict of interest

The authors have no other Conflict of interest to declare that are relevant to the content of this article. The data supporting the findings of this study are available within the paper.

Appendices

Appendices

A: Goerz–Reich–Koch approach

The following theorem was proved by  Goerz et al. in [44, 45].

Theorem 1

Let \(\rho _1=\sum _{n=1}^N \lambda _n|\phi _n\rangle \langle \phi _n|\), where \(\{|\phi _n\rangle \}_{n=1}^N\) is an orthogonal basis in \(\mathbb {C}^N\), be a density matrix with N nonzero nondegenerate eigenvalues. Let a density matrix \(\rho _2\) be a one dimensional orthogonal projector on \(\mathbb {C}^N\) such that \(\rho _2|\phi _n\rangle \ne 0\) for \(n = 1,\ldots ,N\). Let \(\rho _3=\frac{1}{N}\mathbb {I}_N\). Let for some quantum channel \(\Phi\) and for some unitary gate U the three equalities \(\Phi \rho _m=U\rho _mU^\dagger\) (\(m = 1,2,3\)) be satisfied. Then \(\Phi \rho =U \rho U^\dagger\) for any density matrix \(\rho\), i.e., \(\Phi =\Phi _U\).

Theorem 1 implies that achieving zero value for the objective functional \(F_U^{\textrm{GRK,sd}}\), implies successful generation of the target unitary gate U. As the dimension N increases, optimization for functionals \(F_U^{\textrm{GRK,sd}}\) and \(F_U^{\textrm{GRK,sp}}\) is significantly faster than for \(F_U^{\textrm{sd}}\), because the last one depends on \(N^2\) operators from \(\mathcal {M}_N\) instead of the three operators. But as it is shown in Sect. 6, small values of the objective functionals \(F_U^{\textrm{GRK,sd}}\) and \(F_U^{\textrm{GRK,sp}}\) do not necessarily mean small values of the objective functional \(F_U^{\textrm{sd}}\). The function \(J_U^{\textrm{sd}}\) defines the square of the metric on the space of superoperators. It can be shown that the functionals  \(J_U^{\textrm{GRK,sd}}\) and \(J_U^{\textrm{GRK,sp}}\) are continuous in the topology given by this metric. It implies that when the functional \(F_U^{\textrm{sd}}\) reaches sufficiently small values, the functionals \(F_U^{\textrm{GRK,sd}}\) and \(F_U^{\textrm{GRK,sp}}\) will also take on small values.

In our paper, following [44, 45] we consider the following three density matrices which satisfy the conditions of Theorem 1 for the case of two qubits:

$$\begin{aligned} \rho _1 = \textrm{diag}\left( \frac{2}{5}, \frac{3}{10}, \frac{1}{5}, \frac{1}{10} \right) , \quad \rho _2 = \frac{1}{4}J_4, \quad \rho _3=\frac{1}{4}\mathbb {I}_4. \end{aligned}$$
(15)

Here \(J_4\) means the \(4 \times 4\) matrix whose all elements are equal to 1. Note that the action of C-NOT and C-PHASE gates does not change two density matrices of the three density matrices (15). Namely, if \(U=\text {C-NOT}\), then \(\Phi _U\rho _1= \textrm{diag}\left( \frac{2}{5}, \frac{3}{10}, \frac{1}{10}, \frac{1}{5} \right) \ne \rho _1\), \(\Phi _U\rho _2 = \rho _2\) and \(\Phi _U\rho _3= \rho _3\). If \(U=\text {C-PHASE} (\lambda )\), then \(\Phi _U\rho _1= \rho _1\), \(\Phi _U\rho _3= \rho _3\) and

$$\begin{aligned} \Phi _U\rho _2= \frac{1}{4}\begin{pmatrix} 1 &{}\quad 1 &{}\quad 1 &{}\quad e^{-i\lambda } \\ 1 &{}\quad 1 &{}\quad 1 &{}\quad e^{-i\lambda } \\ 1 &{}\quad 1 &{}\quad 1 &{}\quad e^{-i\lambda } \\ e^{i\lambda } &{}\quad e^{i\lambda } &{}\quad e^{i\lambda } &{}\quad 1 \end{pmatrix} \ne \rho _2. \end{aligned}$$

B: Gradient and Hessian of the objective functionals

Practical application of gradient and Hessian-based algorithms relies on analytical formulas for the gradient and the Hessian of the objective functionals, as in inGRAPE [35] of BGFS [52, 53]. Moreover, explicit formulas for the Hessian evaluated at critical points of the objective functional are necessary for the analysis of presence or absence of the trapping behavior of objective functional [83, 86, 89, 95]. In this Appendix, we derive the formulas for the gradient and the Hessian of the objective functionals \(F_U^{\textrm{sd}}\), \(F_U^{\textrm{GRK,sd}}\), and \(F_U^{\textrm{GRK,sp}}\) for any N. Then we substitute piecewise constant controls into the formulas for the gradient and obtain expressions used in this work when applying inGRAPE in Appendix C.

For generality, we provide general formulas for functional variation for a system whose controlled dynamics is determined by a linear evolutionary equation. Consider as a control space a normed space \({\mathcal {U}}\) continuously embedded into the space \(L_1=L_1([0,T];{\mathbb {R}}^d)\). For example, someone can choose \(L_1\) itself, \(L_2=L_2([0,T];{\mathbb {R}}^d)\), \(L_\infty =L_\infty ([0,T];{\mathbb {R}}^d)\) or the space of piecewise constant \({\mathbb {R}}^d\)-valued functions with \(L_\infty\)-norm as \({\mathcal {U}}\). The Hilbert space \(L_2\) is convenient for studying the Hessian [89, 93]; the space \(L_\infty\) is used when there are restrictions on the value of the control function. Equation (2) is a particular case of the general evolutionary equation with control \(f \in {\mathcal {U}}\):

$$\begin{aligned} \dfrac{\textrm{d} \Phi _t^f}{\textrm{d} t} = \mathcal {L}^{f}_t\Phi _t^f, \quad \Phi ^f_0 = \mathbb {I}, \end{aligned}$$
(16)

where \(\mathcal {L}_t^f:=\mathcal {K}+f_\mu (t)\mathcal {N}^\mu\). Here \(\mathcal {K}\), \(\mathcal {N}^\mu\) (\(\mu =1,\ldots ,d)\) are linear operators on a finite dimensional space \(\mathcal {V}\). In this section, we summarize by repeating Greek indices. Carathéodory’s theorem implies that for \(f\in L_1\) Eq. (16) has an unique absolutely continuous solution [120]. The solution of (16) is determined through a chronological exponent:

$$\begin{aligned} \Phi _t^f =\;\hat{T} \exp \!\left( {\displaystyle \int _0^t \textrm{d} s\, \mathcal {L}^{f}_s}\right) = \mathbb {I} + \displaystyle \sum _{n = 1}^{\infty } \dfrac{1}{n!} \int _0^t \dots \int _0^{t} \hat{T} \left\{ \mathcal {L}^{f}_{\tau _n}\cdots \mathcal {L}^{f}_{\tau _1}\right\} \textrm{d} \tau _1 \cdots \textrm{d}\tau _n \nonumber \\ =\mathbb {I} + \int _0^t \mathcal {L}_s^f \,\textrm{d}s + \frac{1}{2} \int _0^t \textrm{d}\tau \!\int _0^{\tau } \!\mathcal {L}^{f}_\tau \mathcal {L}^{f}_s \, \textrm{d}s + \dots , \end{aligned}$$
(17)

where \(\hat{T}\{\,\cdot \,\}\) is the chronological ordering operator, which sets the multipliers in the chronological order of their application in the composition of operators. The series (17) converges for finite-dimensional operators. About the notion of chronological exponent, also see [121, Ch. 2].

Let \(\mathcal {J}\) be a  \(C^2\)-smooth function on \(GL(\mathcal {V})\), the general linear group on \(\mathcal {V}\). Our goal is to calculate the gradient and the Hessian of an arbitrary functional of the form

$$\begin{aligned} \mathcal {F}(f) = \mathcal {J}(\Phi _T^f), \end{aligned}$$
(18)

that is, to calculate the first and second derivatives in the sense of Fréchet in the functional space of controls.

Let us introduce the notation \({(\mathcal {N}_t^{f})}^\mu = {\Phi _t^f}^{-1}\!\mathcal {N}^\mu \Phi _t^f.\) This operator exists due to invertibility of the evolution operator

$$\begin{aligned} {\Phi _t^f}^{-1} = \hat{T}_a \exp \!\left( - {\displaystyle \int _0^t \mathcal {L}^{f}_s \,\textrm{d}s} \right) , \end{aligned}$$

where \(\hat{T}_a\) is the antichronological ordering operator, i.e., unlike the \(\hat{T}\) operator, this operator rearranges the factors in the reverse chronological order of their appearance.

Proposition 1

The first and the second Fréchet derivatives of the functional (18) in the function space \({\mathcal {U}}\) are

$$\begin{aligned} \dfrac{\delta \mathcal {F}(f)}{\delta f_\mu (t)} =&\dfrac{\delta \mathcal {J}\left( \Phi _T^f\right) }{\delta \Phi } \Phi _T^f{(\mathcal {N}_t^{f})}^\mu ,\nonumber \\ \frac{\delta ^2 \mathcal {F}(f)}{\delta f_\mu (t_1)\,\delta f_\nu (t_2)} =&\dfrac{\delta \mathcal {J}\left( \Phi _T^f\right) }{\delta \Phi } \Phi _T^f \hat{T}\{{(\mathcal {N}^{f}_{t_1})}^\mu {(\mathcal {N}^{f}_{t_2})}^\nu \} + \dfrac{\delta ^2\mathcal {J}\left( \Phi _T^f\right) }{\delta \Phi ^2} \left( \Phi _T^f{(\mathcal {N}^{f}_{t_1})}^\mu , \Phi _T^f{(\mathcal {N}^{f}_{t_2})}^\nu \right) . \end{aligned}$$
(19)

Proof

To calculate the derivatives of the objective functional, consider the increment \(\delta f\) in the neighborhood of the control f. Introduce the operator \(W^{f,\delta f}_t\), where

$$\begin{aligned} \Phi ^{f + \delta f}_t = \Phi _t^f W^{f,\delta f}_t. \end{aligned}$$

This operator exists due to invertibility of the evolution operator. The operator \(\Phi ^{f+\delta f}_t\) satisfies Eq. (16) with control \(f+\delta f\). This allows us to obtain the following equation for \(W^{f,\delta f}_t\):

$$\begin{aligned} \dfrac{\textrm{d} }{\textrm{d} t}W^{f,\delta f}_t= \delta f_\mu (t) \, {\Phi _t^f}^{-1}\!\mathcal {N}^\mu \Phi _t^f W^{f,\delta f}_t, \quad W^{f,\delta f}_0 = \mathbb {I}. \end{aligned}$$

Its solution is

$$\begin{aligned} W^{f,\delta f}_T = \hat{T} \exp \!\left( \displaystyle \int _0^T \delta f_\mu (t) {(\mathcal {N}_t^{f})}^\mu \,\textrm{d}t \right) . \end{aligned}$$

Using (17), we obtain the Taylor expansion

$$\Phi _T^{f + \delta f} = \Phi _T^f W_T^{f,\delta f} = \Phi _T^f + \int_0^T \delta f_\mu (t)\Phi _T^f ({{\mathcal{N}}}_t^f )^\mu dt\quad + \frac{1}{2}\int_0^T {\int_0^T {\Phi _T^f } } \hat{T}\{ ({{\mathcal{N}}}_{t_1 }^f )^\mu ({\rm{\mathcal{N}}}_{t_2 }^f )^\nu \} \delta f_\mu (t_1 )\delta f_\nu (t_2 ){\mkern 1mu} dt_1 dt_2 + \ldots$$
(20)

Then the first Fréchet derivative of the control evolution operator equals to

$$\begin{aligned} \dfrac{\delta \Phi _T^f}{\delta f_\mu (t)} = \Phi _T^f{(\mathcal {N}_t^{f})}^\mu . \end{aligned}$$

Hence, the derivative of the functional (18) equals to

$$\begin{aligned} \frac{\delta \mathcal {F}^f}{\delta f_\mu (t)} = \frac{\delta \mathcal {J}\left( \Phi _T^f\right) }{\delta \Phi } \frac{\delta \Phi _T^f}{\delta f_\mu (t)}= \frac{\delta \mathcal {J}\left( \Phi _T^f\right) }{\delta \Phi } \Phi _T^f{(\mathcal {N}_t^{f})}^\mu . \end{aligned}$$

Moreover, decomposition (20) gives an expression for the second-order derivative of the evolution operator:

$$\begin{aligned} \dfrac{\delta ^2\Phi _T^f}{\delta f_\mu (t_1) \delta f_\nu (t_2)} = \Phi _T^f \hat{T}\{{(\mathcal {N}_{t_1}^{f})}^\mu {(\mathcal {N}_{t_2}^{f})}^\nu \}. \end{aligned}$$

The formula for the second derivative of an arbitrary functional (18) is obtained by differentiating (19) as follows:

$$\begin{aligned} \frac{\delta ^2 \mathcal {F}(f)}{\delta f_\mu (t_1) \delta f_\nu (t_2)} = \dfrac{\delta \mathcal {J}\left( \Phi _T^f\right) }{\delta \Phi } \Phi _T^f \hat{T}\{{(\mathcal {N}_{t_1}^{f})}^\mu {(\mathcal {N}_{t_2}^{f})}^\nu \} + \dfrac{\delta ^2\mathcal {J}\left( \Phi _T^f\right) }{\delta \Phi ^2} \left( \Phi _T^f{(\mathcal {N}_{t_1}^{f})}^\mu , \Phi _T^f{(\mathcal {N}_{t_2}^{f})}^\nu \right) , \end{aligned}$$

where \(\dfrac{\delta ^2\mathcal {J}}{\delta \Phi ^2} (\,\cdot \,,\,\cdot \,)\), being a second-order derivative, is a bilinear map. \(\hfill \square\)

Let the control \(f=(f_1,f_2,f_3)=(u,n_1,n_2)\) belong to the interior of the set of admissible controls \(\{f\in L_\infty ([0,T],\mathbb {R}^3):f_2\ge 0,f_3\ge 0\}\). Proposition 1 implies that the first and the second Fréchet derivatives of the objective functional \(F_U\) at the control point f have the form

$$\begin{aligned} (F_{U})'[f](\delta f)&=\int _0^T\frac{\delta F_{U}[f]}{\delta f_\mu (t)}\delta f_\mu (t)dt,\\ (F_{U})''[f](\delta f_1,\delta f_2)&= \int _0^T\int _0^T\frac{\delta ^2{F_{U}}[f]}{\delta f_\mu (t_1) \delta f_\nu (t_2)} (\delta f_1)_\mu (t_1)(\delta f_2)_\nu (t_2)dt_1dt_2, \end{aligned}$$

where \(F_U\) means \(F_U^{\textrm{sd}}\) or \(F_U^{\textrm{GRK,sd}}\) or \(F_U^{\textrm{GRK,sp}}\).

Proposition 2

Gradient and Hessian of the functional \(F_{U}^{\textrm{sd}}\) have the forms

$$\begin{aligned} \frac{\delta F_{U}^{\textrm{sd}}[f]}{\delta f_\mu (t)}&=\frac{1}{N^2}\textrm{Tr}\left( {(\Phi _T^f-\Phi _U)}^\dagger \Phi _T^f{(\mathcal {N}^{f}_t)}^\mu \right) .\\ \frac{\delta ^2{F_{U}^{\textrm{sd}}[f]}}{\delta f_\mu (t_1) \delta f_\nu (t_2)}&=\frac{1}{N^2}\textrm{Tr}\left( (\Phi _T^f-\Phi _U)^\dagger \Phi _T^f \hat{T}\{{(\mathcal {N}_{t_1}^{f})}^\mu {(\mathcal {N}_{t_2}^{f})}^\nu \}\right) +\frac{1}{N^2} \textrm{Tr}\left( (\Phi _T^f {(\mathcal {N}_{t_1}^{f})}^\mu )^\dagger \Phi _T^f {(\mathcal {N}_{t_2}^{f})}^\nu \right) . \end{aligned}$$

Proposition 3

Gradient and Hessian of the functional \(F^{\textrm{GRK,sd}}_{U}\) have the forms

$$\begin{aligned} \frac{\delta F^{\textrm{GRK,sd}}_{U}[f]}{\delta f_\mu (t)}=&\sum _{m=1}^3\frac{1}{3}\textrm{Tr}\left( (\Phi _T^f\rho _{m}-\Phi _U\rho _{m})\Phi _T^f{(\mathcal {N}^{f}_t)}^\mu \rho _{m}\right) .\\ \frac{\delta ^2{F^{\textrm{GRK,sd}}_{U}[f]}}{\delta f_\mu (t_1) \delta f_\nu (t_2)}=&\sum _{m=1}^3\frac{1}{3}\textrm{Tr}\left( (\Phi _T^f\rho _{m}-\Phi _U\rho _{m}) \Phi _T^f\hat{T}\{{(\mathcal {N}_{t_1}^{f})}^\mu {(\mathcal {N}_{t_2}^{f})}^\nu \}\rho _{m}\right) \\&+\sum _{m=1}^3\frac{1}{3}\textrm{Tr}\left( \Phi _T^f {(\mathcal {N}_{t_1}^{f})}^\mu \rho _{m}\Phi _T^f {(\mathcal {N}_{t_2}^{f})}^\nu \rho _{m}\right) . \end{aligned}$$

Proposition 4

Gradient and Hessian of the functional \(F_U^{\textrm{GRK,sp}}\) have the forms

$$\begin{aligned} \frac{\delta F_U^{\textrm{GRK,sp}}[f]}{\delta f_\mu (t)}&= -\sum _{m=1}^3\frac{1}{3\textrm{Tr} {\rho }^2_m} \left( \textrm{Tr}\left[ \Phi _U{\rho }_m\Phi _T^f{(\mathcal {N}^{f}_t)}^\mu \rho _m\right] \right) .\\ \frac{\delta ^2 F_U^{\textrm{GRK,sp}}[f]}{\delta f_\mu (t_1) \delta f_\nu (t_2)}&=-\sum _{m=1}^3 \frac{1}{3\textrm{Tr} {\rho }^2_m}\left( \textrm{Tr}\left[ \Phi _U{\rho }_m\Phi _T^f\hat{T}\{{(\mathcal {N}_{t_1}^{f})}^\mu {(\mathcal {N}_{t_2}^{f})}^\nu \}\rho _m\right] \right) \end{aligned}$$

Propositions 2, 34 are direct consequences of Proposition 1.

C: Realification of the quantum system and of the objective functionals

Realification of the set of density matrices and the set of operators on this set is important in the context of optimization in order to reduce computational space and time cost. It is done by performing only real-value calculations instead of complex-value calculations. As it will be shown further, this enables reduction by half the dimension of spaces carrying states and operators on states.

1.1 C.1: Parametrization of the density matrix

Taking into account the hermiticity of the density matrix, we consider a parameterization of density matrix \(\rho\) by a real vector \(x=x_\rho =(x_1,\ldots ,x_{16}) \in \mathbb {R}^{16}\). More specifically, we consider the following expansion in the special Hermitian basis \(\{M_k\}\):

$$\begin{aligned} \rho = \sum _{j = 1}^{16} x_j M_j = \begin{pmatrix} x_1 &{} x_2 + i x_3 &{} x_4 + i x_5 &{} x_6 + i x_7 \\ x_2 - i x_3 &{} x_8 &{} x_9 + i x_{10} &{} x_{11} + i x_{12} \\ x_4 - i x_5 &{} x_9 - i x_{10} &{} x_{13} &{} x_{14} + i x_{15} \\ x_6 - i x_7 &{} x_{11} - i x_{12} &{} x_{14} - i x_{15} &{} x_{16} \end{pmatrix}. \end{aligned}$$
(21)

The condition \(\textrm{Tr}\rho =1\) implies linear dependence \(x_1+x_8+x_{13}+x_{16}=1\).

Rewritten for the coordinate vector x, the dynamical systems 1, 2, and 3 have the following form:

$$\begin{aligned} \dfrac{\textrm{d} x^{u,n}}{\textrm{d} t} = L^{u,n}_t x, \quad x^{u,n}(0) = x_{\rho _0}, \end{aligned}$$
(22)

where \(L_t^{u,n}\) is the matrix of the generator \({\mathcal L } _t^{u,n}\) in the basis \(M = \{M_j\}_{j = 1}^{16}\) (21):

$$\begin{aligned} L_t^{u,n} = \left( A + B_u u(t) + B_{n_1} n_1(t) + B_{n_2} n_2(t) \right) , \end{aligned}$$

the \(16 \times 16\) matrices A, \(B_u\), \(B_{n_1}\), \(B_{n_2}\) are found by substituting the expansion (21) into the master Eq. (1) with the Hamiltonian (5) and the dissipator (9) for each system 1, 2, and 3 defined in Sect. 4; \(x_{\rho _0}\) is the coordinate vector of \(\rho _0\). For the interaction Hamiltonians \(V_1\) and \(V_2\), these dynamical systems and initial conditions were explicitly written in [71]. For brevity, here we do not reproduce these equations and the corresponding matrices.

Introduce an evolution operator \(\Psi ^{u,n}_t\) which is a matrix of the evolution operator \(\Phi ^{u,n}_t\) in the basis \(M = \{M_j\}_{j = 1}^{16}\) (21), gives evolution of a vector x: \(x^{u,n}(t) = \Psi ^{u, n}_t x_{\rho _0}\), and satisfies equation:

$$\begin{aligned} \dfrac{\textrm{d} \Psi }{\textrm{d} t} = L_t^{u,n} \Psi , \quad \Psi _0 = \mathbb {I}. \end{aligned}$$
(23)

Note that any quantum channel \(\Phi\) maps density matrices to density matrices, therefore a matrix \(\Psi\) of any quantum channel is real-valued in the Hermitian basis:

$$\begin{aligned} \Psi \in \mathbb {R}^{N\times N} \subset \mathbb {C}^{N\times N}. \end{aligned}$$

1.2 C.2: Objective functionals and their Gradients in terms of real-valued states

Here, we provide expressions for the objective kinematic functionals and their gradient in the real-valued parameterization proposed in (21). Firstly, we rewrite expressions for the objective kinematic functionals \(J_U^{\textrm{sd}}\), \(J_U^{\textrm{GRK,sd}}\), and \(J_U^{\textrm{GRK,sp}}\) as functionals of a matrix \(\Psi\) of an operator \(\Phi\) in the basis \(M = \{M_j\}_{j = 1}^{16}\). Then we rewrite expressions for the gradient of the objective dynamic functionals in a convenient and effective for optimization form.

The first functional \(J_U^{\textrm{sd}}\) needs calculation of the squared Hilbert–Schmidt norm \(\Vert \Phi \Vert ^2 = \textrm{Tr}(\Phi ^\dagger \Phi )\). For that we prove the following proposition.

Proposition 5

Let \(\Psi\) and \(\Psi '\) be matrices of operators \(\Phi\) and \(\Phi '\) on \(\mathbb {C}^{N\times N}\), respectively, in an orthogonal basis \(M = \{M_j\}_{j = 1}^{N^2}\), \(M_j \in \mathbb {C}^{N\times N}\), \(\langle M_i, M_j\rangle = \textrm{Tr}(M_i^\dagger M_j) = \beta _j\delta _{ij}\); \(i,j = 1, \ldots , N^2\). Then the Hilbert–Schmidt scalar product of \(\Phi , \Phi '\) equals

$$\begin{aligned} \langle \Phi , \Phi '\rangle = \sum _{i,j = 1}^{N^2}\frac{\beta _i}{\beta _j}\overline{\Psi }_{ij}\Psi '_{ij}. \end{aligned}$$
(24)

Proof

Let \(\rho\) and \(\sigma\) be matrices in \(\mathbb {C}^{N\times N}\) and have coordinates x and y, respectively, in the orthogonal basis M. Then their scalar product equals

$$\begin{aligned} \langle \rho , \sigma \rangle = \overline{(\beta \circ x)}^Ty, \end{aligned}$$
(25)

where “\(\circ\)“ denotes the Hadamard product that returns the vector which components equal

$$\begin{aligned} (\beta \circ x)_j = \beta _j x_j,\quad j = 1, \ldots , N^2. \end{aligned}$$

Denote by \({\Psi }^\dagger\) a matrix of \({\Phi }^\dagger\) in the basis M. From the equality \(\langle \rho , \Phi \sigma \rangle = \langle {\Phi }^\dagger \rho , \sigma \rangle\) we have that the components of \({\Psi }^\dagger\) equal

$$\begin{aligned} {\Psi }^\dagger _{ij} = \frac{\beta _i}{\beta _j}\overline{\Psi }_{ji}. \end{aligned}$$

Then the Hilbert–Schmidt scalar product equals

$$\begin{aligned} \langle \Phi , \Phi '\rangle = \textrm{Tr}{\Psi }^\dagger \Psi ' = \sum _{i,j = 1}^N\frac{\beta _i}{\beta _j}\overline{\Psi }_{ij}\Psi '_{ij}. \end{aligned}$$

\(\square\)

The considered parameterization basis \(M = \{M_j\}_{j = 1}^{16}\) (21) is orthogonal, the vector of squared norms \(\beta _j = \textrm{Tr}M_j^\dagger M_j\) equals

$$\begin{aligned} \beta = (1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 1). \end{aligned}$$

Equations (24) and (25) justify introducing scalar products and norms in \(\mathbb {R}^{16}\) and in \(\mathbb {R}^{16\times 16}\):

$$\begin{aligned} \langle x, y\rangle _M&= \langle \beta \circ x, y\rangle = \sum _{j = 1}^{16} \beta _j x_j y_j,\quad \Vert x\Vert ^2_M = \langle x, x\rangle _M,\quad x,y \in \mathbb {R}^{16};\\ \langle \Psi , \Psi '\rangle _M&= \sum _{i,j = 1}^{16}\frac{\beta _i}{\beta _j}\Psi ^1_{ij}\Psi '_{ij},\quad \Vert \Psi \Vert ^2_M = \langle \Psi , \Psi \rangle _M,\quad \Psi , \Psi '\in \mathbb {R}^{16\times 16}. \end{aligned}$$

Thus, we can write the objective kinematic functionals as a function of \(\Psi\) as follows:

Proposition 6

The objective kinematic functionals \(J_U^{\textrm{sd}}\), \(J_U^{\textrm{GRK,sd}}\), and \(J_U^{\textrm{GRK,sp}}\) as functionals of a matrix \(\Psi\) of an operator \(\Phi\) in the basis \(\{M_j\}_{j = 1}^{16}\) used in (21) are equal to

$$\begin{aligned} J_U^{\textrm{sd}}(\Phi )&= \frac{1}{32}\Vert \Psi - \Psi _U\Vert ^2_M, \\ J_U^{\textrm{GRK,sd}}(\Phi )&= \frac{1}{6}\sum _{m = 1}^3 \Vert \Psi x_{\rho _m} - \Psi _Ux_{\rho _m}\Vert ^2_M, \\ J_U^{\textrm{GRK,sp}}(\Phi )&= 1 - \frac{1}{3}\sum _{m = 1}^3 \dfrac{\langle \Psi x_{\rho _m}, \Psi _U x_{\rho _m}\rangle _M}{\Vert x_{\rho _m}\Vert ^2_M}. \end{aligned}$$

where \(\Psi _U\) is a matrix of \(\Phi _U\) and \(x_{\rho _m}\) is the coordinate vectors of \(\rho _m\), \(m = 1,2,3\), in the parameterization basis (21).

Let control \(f = (u, n_1, n_2)\) be a piecewise constant control given by (10). In addition, consider control \(g = (u, w_1, w_2)\), where \(w_1\) and \(w_2\) are given by the change of variable (11). Denote by \(x_{\rho _m}^f(t)\) the solution of the system (22) with the initial condition \(x_{\rho _m}^f(0) = x_{\rho _m}\). When considering piecewise constant controls, the generator matrix \(L^f_t\) is constant on the intervals: \(L_t^f = L^f_{t_{k-1}} = A + B_uu_k + B_{n_1}n_{k,1} + B_{n_2}n_{k,2}\) for any \(t \in [t_{k-1}, t_k)\). The evolution matrix values \(\Psi _{t_k}^f\) on the borders \(t_k\) are equal to \(\Psi ^f_{t_k} = \exp (\Delta t L^f_{t_{k-1}}) \cdots \exp (\Delta t L^f_0)\). For the considered piecewise constant control, the objective functional \(F_U\) become function of 3K variables \(g_{k,\mu }\).

For the optimization process described in Sect. 5 we use the following expressions for gradient of the objective functionals \(F_U^{\textrm{sd}}\), \(F_U^{\textrm{GRK,sd}}\), and \(F_U^{\textrm{GRK,sp}}\) which are derived as direct corollary of Propositions 23, and 4 in Appendix B.

Proposition 7

Gradient of the functional \(F_U^{\textrm{sd}}\) has the form

$$\begin{aligned} \dfrac{\partial F_U^{\textrm{sd}}}{\partial g_{k,\mu }} = \frac{1}{16}\left\langle \Psi _T^f - \Psi _U, \dfrac{\partial \Psi ^f_T}{\partial g_{k,\mu }}\right\rangle _M. \end{aligned}$$
(26)

Proposition 8

Gradient of the functional \(F_U^{\textrm{GRK,sd}}\) has the form

$$\begin{aligned} \dfrac{\partial F_U^{\textrm{GRK,sd}}}{\partial g_{k,\mu }} = \frac{1}{3}\sum _{m = 1}^3\left\langle \Psi _T^f x_{\rho _m} - \Psi _Ux_{\rho _m}, \dfrac{\partial x^f_{\rho _m}(T)}{\partial g_{k,\mu }}\right\rangle _M. \end{aligned}$$
(27)

Proposition 9

Gradient of the functional \(F_U^{\textrm{GRK,sp}}\) has the form

$$\begin{aligned} \dfrac{\partial F_U^{\textrm{GRK,sp}}}{\partial g_{k,\mu }} = -\frac{1}{3}\sum _{m = 1}^3\frac{1}{\Vert x_{\rho _m}\Vert ^2_M}\left\langle \Psi _U x_{\rho _m}, \dfrac{\partial x^f_{\rho _m}(T)}{\partial g_{k,\mu }}\right\rangle _M. \end{aligned}$$
(28)

Proposition 10

Gradient of the evolution matrix \(\Psi _T^f\) and the final states \(x_{\rho _m}(T,f)\) equals

$$\begin{gathered} \frac{{\partial \Psi _T^f }}{{\partial u_k }} = \Delta t\Psi _{t_k ,T}^f \int_0^1 {\exp } \left( {(1 - \tau )\Delta tL_{t_{k - 1} }^f } \right)B_u \exp \left( {\tau \Delta tL_{t_{k - 1} }^f } \right)d\tau \Psi _{t_{k - 1} }^f , \hfill \\ \frac{{\partial \Psi _T ^f }}{{\partial w_{k,l} }} = 2w_{k,l} \Delta t\Psi _{t_k ,T}^f \int_0^1 {\exp } \left( {(1 - \tau )\Delta tL_{t_{k - 1} }^f } \right)B_{n_l } \exp \left( {\tau \Delta tL_{t_{k - 1} }^f } \right)d\tau \Psi _{t_{k - 1} }^f \hfill \\ \frac{{\partial x_{\rho _m }^f (T)}}{{\partial u_k }} = \Delta t\Psi _{t_k ,T}^f \int_0^1 {\exp } \left( {(1 - \tau )\Delta tL_{t_{k - 1} }^f } \right)B_u \exp \left( {\tau \Delta tL_{t_{k - 1} }^f } \right)d\tau x_{\rho _m }^f (t_{k - 1} ), \hfill \\ \frac{{\partial x_{\rho _m }^f (T)}}{{\partial w_{k,l} }} = 2w_{k,l} \Delta t\Psi _{t_k ,T}^f \int_0^1 {\exp } \left( {(1 - \tau )\Delta tL_{t_{k - 1} }^f } \right)B_{n_l } \exp \left( {\tau \Delta tL_{t_{k - 1} }^f } \right)d\tau x_{\rho _m }^f (t_{k - 1} ), \hfill \\ \end{gathered}$$
(29)

\(k = 1, \ldots , K\); \(l = 1,2\); \(m = 1, 2, 3\).

Here, the evolution matrix from time s to time t is defined as \(\Psi _{s,t}^f = \Psi _t^f{\Psi _s^f}^{-1}\). Its values for \(s = t_k\) and \(t = T\) are equal to \(\Psi ^f_{t_k,T} = \exp (\Delta t L^f_{t_{K-1}}) \cdots \exp (\Delta t L^f_{t_{k}}).\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pechen, A.N., Petruhanov, V.N., Morzhin, O.V. et al. Control landscapes for high-fidelity generation of C-NOT and C-PHASE gates with coherent and environmental driving. Eur. Phys. J. Plus 139, 411 (2024). https://doi.org/10.1140/epjp/s13360-024-05143-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05143-w

Navigation