Skip to main content
Log in

Probing an emergent U(1) extension of the standard model at colliders

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We explore the potential of probing for a new neutral gauge boson that emerges from a topologically nontrivial structure of spacetime, focusing on its couplings to the fermions of the Standard Model. We analyze the current experimental constraints on the mass of the new gauge boson and the radius of the fifth dimension, using the LEP bound and the LHC with 140 \(\text {fb}^{-1}\) luminosity. In addition, we investigate the expected sensitivity at the ILC to the indirect search of the new gauge boson and its discrimination from other hypothetical gauge bosons like those predicted in the U(1)\(_{B-L}\) and U(1)\(_R\) models by studying the forward-backward, left-right, and left-right-forward-backward asymmetries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

No datasets were generated or analysed during the current study.

References

  1. Y. Fukuda, Super-Kamiokande Collaboration et al., Phys. Lett. B 433, 9 (1998)

  2. Y. Fukuda, Super-Kamiokande Collaboration et al., Phys. Lett. B 436, 33 (1998)

  3. Y. Fukuda, Super-Kamiokande Collaboration et al., Phys. Rev. Lett. 81, 1562 (1998)

  4. G. Aad, ATLAS Collaboration et al., JHEP 1211, 138 (2012)

  5. S. Chatrchyan, CMS Collaboration et al., Phys. Lett. B 720, 63 (2013)

  6. G. Aad, ATLAS Collaboration et al., Phys. Rev. D 90, 052005 (2014)

  7. V. Khachatryan, CMS Collaboration et al., JHEP 1504, 025 (2015)

  8. M. Aaboud, ATLAS Collaboration et al., Phys. Lett. B 761, 372 (2016)

  9. M. Aaboud, ATLAS Collaboration et al., JHEP 1710, 182 (2017)

  10. V. Khachatryan, CMS Collaboration et al., Phys. Lett. B 768, 57 (2017)

  11. R. N. Mohapatra, R. E. Marshak, Phys. Rev. Lett. 44, 1316 (1980); 44, 1643(E) (1980)

  12. R.E. Marshak, R.N. Mohapatra, Phys. Lett. 91B, 222 (1980)

    Article  ADS  Google Scholar 

  13. S. Khalil, J. Phys. G 35, 055001 (2008)

    Article  Google Scholar 

  14. S. Iso, N. Okada, Y. Orikasa, Phys. Lett. B 676, 81 (2009)

    Article  ADS  Google Scholar 

  15. S. Khalil, Phys. Rev. D 82, 077702 (2010)

    Article  ADS  Google Scholar 

  16. A. Latosinski, K.A. Meissner, H. Nicolai, Eur. Phys. J. C 73, 2336 (2013)

    Article  ADS  Google Scholar 

  17. A. Das, N. Okada, N. Papapietro, Eur. Phys. J. C 77, 122 (2017)

    Article  ADS  Google Scholar 

  18. A. Biswas, S. Choubey, S. Khan, Eur. Phys. J. C 77, 875 (2017)

    Article  ADS  Google Scholar 

  19. S. Singirala, R. Mohanta, S. Patra, Eur. Phys. J. Plus 133, 477 (2018)

    Article  Google Scholar 

  20. T. Nomura, Eur. Phys. J. C 78, 189 (2018)

    Article  ADS  Google Scholar 

  21. D.A. Camargo, M.D. Campos, T.B. de Melo, F.S. Queiroz, Phys. Lett. B 795, 319 (2019)

    Article  ADS  Google Scholar 

  22. C. Marzo, L. Marzola, V. Vaskonen, Eur. Phys. J. C 79, 601 (2019)

    Article  ADS  Google Scholar 

  23. W. Chao, Phys. Lett. B 695, 157 (2011)

    Article  ADS  Google Scholar 

  24. W. Chao, Phys. Rev. D 93, 115013 (2016)

    Article  ADS  Google Scholar 

  25. X. He, G.C. Joshi, H. Lew, R. Volkas, Phys. Rev. D 43, R22 (1991)

    Article  ADS  Google Scholar 

  26. S. Baek, N.G. Deshpande, X.-G. He, P. Ko, Phys. Rev. D 64, 055006 (2001)

    Article  ADS  Google Scholar 

  27. J. Heeck, W. Rodejohann, Phys. Rev. D 84, 075007 (2011)

    Article  ADS  Google Scholar 

  28. W. Altmannshofer, S. Gori, M. Pospelov, I. Yavin, Phys. Rev. D 89, 095033 (2014)

    Article  ADS  Google Scholar 

  29. M. Das, S. Mohanty, Phys. Rev. D 89, 025004 (2014)

    Article  ADS  Google Scholar 

  30. S. Baek, H. Okada, K. Yagyu, JHEP 1504, 049 (2015)

    Article  ADS  Google Scholar 

  31. A. Biswas, S. Choubey, S. Khan, JHEP 1609, 147 (2016)

    Article  ADS  Google Scholar 

  32. K. Asai, K. Hamaguchi, N. Nagata, Eur. Phys. J. C 77, 763 (2017)

    Article  ADS  Google Scholar 

  33. S. Lee, T. Nomura, H. Okada, Nucl. Phys. B 931, 179 (2018)

    Article  ADS  Google Scholar 

  34. A. Kamada, K. Kaneta, K. Yanagi, H.B. Yu, JHEP 1806, 117 (2018)

    Article  ADS  Google Scholar 

  35. G. Arcadi, T. Hugle, F.S. Queiroz, Phys. Lett. B 784, 151 (2018)

    Article  ADS  Google Scholar 

  36. H. Banerjee, P. Byakti, S. Roy, Phys. Rev. D 98, 075022 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  37. J.-X. Hou, C.-X. Yue, Eur. Phys. J. C 79, 983 (2019)

    Article  ADS  Google Scholar 

  38. T. Nomura, H. Okada, Phys. Lett. B 761, 190 (2016)

    Article  ADS  Google Scholar 

  39. T. Nomura, H. Okada, Phys. Rev. D 96, 015016 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  40. M.D. Campos, D. Cogollo, M. Lindner, T. Melo, F.S. Queiroz, W. Rodejohann, JHEP 1708, 092 (2017)

    Article  ADS  Google Scholar 

  41. T. Nomura, H. Okada, Phys. Rev. D 97, 015015 (2018)

    Article  ADS  Google Scholar 

  42. W. Chao, Eur. Phys. J. C 78, 103 (2018)

    Article  ADS  Google Scholar 

  43. S. Jana, P.K. Vishnu, S. Saad, Eur. Phys. J. C 79, 916 (2019)

    Article  ADS  Google Scholar 

  44. C.H. Nam, J. Phys. G 48, 015004 (2020)

    Article  ADS  Google Scholar 

  45. C.H. Nam, Eur. Phys. J. C 79, 384 (2019)

    Article  ADS  Google Scholar 

  46. C.H. Nam, Eur. Phys. J. C 80, 231 (2020)

    Article  ADS  Google Scholar 

  47. T. Kaluza, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) 1921, 966972 (1921)

    Google Scholar 

  48. O. Klein, Z. Phys. Hadrons Nucl. 37(12), 895906 (1926). https://doi.org/10.1007/BF01397481

    Article  Google Scholar 

  49. D. Bailin, A. Love, Rep. Prog. Phys. 50, 1087 (1987)

    Article  ADS  Google Scholar 

  50. J.M. Overduin, P.S. Wesson, Phys. Rep. 283, 303 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  51. Mikio Nakahara, Geometry, Topology and Physics (Institute of Physics Publishing, London, 2003)

    Google Scholar 

  52. C.H. Nam, Eur. Phys. J. C 81, 1102 (2021)

    Article  ADS  Google Scholar 

  53. S. Schael, ALEPH and DELPHI and L3 and OPAL and LEP Electroweak Collaborations et al., Phys. Rep. 532, 119 (2013)

  54. E. Accomando, A. Belyaev, J. Fiaschi, K. Mimasu, S. Moretti, C. Shepherd-Themistocleous, JHEP 1601, 127 (2016)

    Article  ADS  Google Scholar 

  55. A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Eur. Phys. J. C 63, 189 (2009)

    Article  ADS  Google Scholar 

  56. CMS Collaboration, Search for a narrow resonance in high-mass dilepton final states in proton-proton collisions using 140\(\text{fb}^{-1}\)of data at\(\sqrt{s}=13\)TeV, CMS-PAS-EXO-19-019

  57. A.M. Sirunyan, CMS collaboration et al., JHEP 07, 208 (2021)

  58. H. Baer, et al., The International Linear Collider Technical Design Report—Volume 2: Physics, arXiv:1306.6352

  59. T.H. Tran, V. Balagura, V. Boudry, J.-C. Brient, H. Videau, Eur. Phys. J. C 76, 468 (2016)

    Article  ADS  Google Scholar 

  60. A. Djouadi, A. Leike, T. Riemann, D. Schaile, C. Verzegnassi, Z. Phys. C 56, 289 (1992)

    Article  ADS  Google Scholar 

  61. T. Nomura, H. Okada, JHEP 1801, 099 (2018)

    Article  ADS  Google Scholar 

  62. A. Aryshev, ILC International Development Team, et al., The International Linear Collider: Report to Snowmass, arXiv:2203.07622 (2021)

  63. A. Leike, S. Riemann, Z. Phys. C 75, 341 (1997)

    Article  Google Scholar 

  64. I. Bozovic-Jelisavcic, S. Lukic, G. Milutinovic Dumbelovic, M. Pandurovic, I. Smiljanic, JINST 8, P08012 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank the Referee for the constructive comments, suggestions, and questions that helped to improve the quality of the paper. This research is funded by Phenikaa University under grant number PU2022-1-A-16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cao H. Nam.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hung, T.N., Nam, C.H. Probing an emergent U(1) extension of the standard model at colliders. Eur. Phys. J. Plus 139, 376 (2024). https://doi.org/10.1140/epjp/s13360-024-05137-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05137-8

Navigation