Skip to main content
Log in

An algorithm for exact analytical solutions for tilted anisotropic Dirac materials

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this article, we obtain the exact solutions for bound states of tilted anisotropic Dirac materials under the action of external electric and magnetic fields with translational symmetry. In order to solve the eigenvalue equation that arises from the effective Hamiltonian of these materials, we describe an algorithm that allows us to decouple the differential equations that are obtained for the spinor components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

All data generated or analyzed during this study are included in this published article.

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. B. Feng, J. Zhang, Q. Zhong, W. Li, S. Li, H. Li, P. Cheng, S. Meng, L. Chen, K. Wu, Experimental realization of two-dimensional boron sheets. Nat. Chem. 8(6), 563 (2016)

    Article  CAS  PubMed  Google Scholar 

  3. B. Feng, J. Zhang, R.-Y. Liu, T. Iimori, C. Lian, H. Li, L. Chen, Kehui Wu, S. Meng, F. Komori, I. Matsuda, Direct evidence of metallic bands in a monolayer boron sheet. Phys. Rev. B 94, 041408 (2016)

    Article  ADS  Google Scholar 

  4. Y. Zhao, X. Li, J. Liu, C. Zhang, Q. Wang, A new anisotropic dirac cone material: a B2S honeycomb monolayer. J. Phys. Chem. Lett. 9(7), 1815–1820 (2018)

    Article  CAS  PubMed  Google Scholar 

  5. N. Tajima, K. Kajita, Experimental study of organic zero-gap conductor \(\alpha\)-(BEDT-TTF)\(_2\)I\(_3\). Sci. Technol. Adv. Mater. 10(2), 024308 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  6. M.O. Goerbig, J.-N. Fuchs, G. Montambaux, F. Piéchon, Tilted anisotropic Dirac cones in quinoid-type graphene and \(\alpha\)-(BEDT-TTF)\(_2\)I\(_3\). Phys. Rev. B 78(4), 045415 (2008)

    Article  ADS  Google Scholar 

  7. M.O. Goerbig, J.-N. Fuchs, G. Montambaux, F. Piéchon, Electric-field–induced lifting of the valley degeneracy in \(\alpha\)-(BEDT-TTF)\(_2\)I\(_3\) Dirac-like Landau levels. Europhys. Lett. (EPL) 85(5), 57005 (2009)

    Article  ADS  Google Scholar 

  8. T. Morinari, T. Himura, T. Tohyama, Possible verification of tilted anisotropic dirac cone in \(\alpha\)-(BEDT-TTF)\(_2\)I\(_3\) using interlayer magnetoresistance. J. Phys. Soc. Jpn. 78(2), 023704 (2009)

    Article  ADS  Google Scholar 

  9. D. Sabsovich, T. Meng, D.I. Pikulin, R. Queiroz, R. Ilan. Pseudo field effects in type II Weyl semimetals: new probes for over tilted cones. J. Phys. Condens. Matter, 32(48), 484002 (2020)

  10. J.R. Schaibley, H. Yu, G. Clark, P. Rivera, J.S. Ross, K.L. Seyler, W. Yao, X. Xu, Valleytronics in 2D materials. Nat. Rev. Mater. 1(11), 16055 (2016)

  11. Y.S. Ang, S.A. Yang, C. Zhang, Z. Ma, L.K. Ang, Valleytronics in merging Dirac cones: all-electric-controlled valley filter, valve, and universal reversible logic gate. Phys. Rev. B 96, 245410 (2017)

  12. Ş Kuru, J. Negro, L.M. Nieto, Exact analytic solutions for a Dirac electron moving in graphene under magnetic fields. J. Phys. Condensed Matter 21(45), 455305 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Y. Concha, A. Huet, A. Raya, D. Valenzuela, Supersymmetric quantum electronic states in graphene under uniaxial strain. Mater. Res. Exp. 5(6), 065607 (2018)

    Article  Google Scholar 

  14. Y. Betancur-Ocampo, E. Díaz-Bautista, T. Stegmann, Valley-dependent time evolution of coherent electron states in tilted anisotropic Dirac materials. Phys. Rev. B 105(4), 045401 (2022)

    Article  ADS  CAS  Google Scholar 

  15. E. Díaz-Bautista, About the time evolution of coherent electron states in monolayers of boron allotropes. Acta Polytechnica 62(1), 38–49 (2022)

    Article  Google Scholar 

  16. J. Schwinger, On gauge invariance and vacuum polarization. Phys. Rev. 82, 664–679 (1951)

    Article  ADS  MathSciNet  Google Scholar 

  17. D. Allor, T.D. Cohen, D.A. McGady, Schwinger mechanism and graphene. Phys. Rev. D 78, 096009 (2008)

    Article  ADS  Google Scholar 

  18. A.I. Berdyugin, N. Xin, H. Gao, S. Slizovskiy, Z. Dong, S. Bhattacharjee, P. Kumaravadivel, S. Xu, L.A. Ponomarenko, M. Holwill, D.A. Bandurin, M. Kim, Y. Cao, M.T. Greenaway, K.S. Novoselov, I.V. Grigorieva, K. Watanabe, T. Taniguchi, V.I. Fal’ko, L.S. Levitov, R. Krishna Kumar, A.K. Geim. Out-of-equilibrium criticalities in graphene superlattices. Science 375(6579), 430–433 (2022)

  19. A. Schmitt, P. Vallet, D. Mele, M. Rosticher, T. Taniguchi, K. Watanabe, E. Bocquillon, G. Fève, J.M. Berroir, C. Voisin, J. Cayssol, M.O. Goerbig, J. Troost, E. Baudin, B. Plaçais, Mesoscopic Klein–Schwinger effect in graphene. Nat. Phys. (2023)

  20. M. Castillo-Celeita, E. Díaz-Bautista, M. Oliva-Leyva, Coherent states for graphene under the interaction of crossed electric and magnetic fields. Ann. Phys. 421, 168287 (2020)

    Article  MathSciNet  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by CONAHCYT (Mexico), through the project FORDECYT-PRONACES/61533/2020. DOC especially thanks Conahcyt for economic support through the Postdoctoral Fellowship with CVU number 712322. EDB also acknowledges the SIP-IPN research grant 20230193.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel O-Campa.

Appendices

Appendix A The matrix \(\mathbb {S}\)

If the matrix \(\mathbb {K}\) described in section 3 becomes constant, it can be expressed as

$$\begin{aligned} \mathbb {K}= \begin{pmatrix} -a_2&{}-ia_1\\ &{}\\ -ia_1&{}a_2 \end{pmatrix}. \end{aligned}$$
(A.1)

Then, the characteristic polynomial of \(\mathbb {K}\) is given by

$$\begin{aligned} p_{\mathbb {K}}(t)=t^2-(a_2^2-a_1^2). \end{aligned}$$
(A.2)

Its corresponding eigenvalues are \(\lambda _1=\lambda\) and \(\lambda _2=-\lambda\) with \(\lambda =\sqrt{a_2^2-a_1^2}\). Consequently, the corresponding eigenvectors \(\vec {v_j}\) for \(j=1,2\) turn out to be

$$\begin{aligned} \vec {v_1}=w_1 \begin{pmatrix} \frac{a_1}{a_2+\lambda }\\ &{}\\ i \end{pmatrix},\quad \vec {v_2}=w_2 \begin{pmatrix} -i\\ &{}\\ \frac{a_1}{a_2+\lambda } \end{pmatrix}, \end{aligned}$$
(A.3)

where \(w_1\), \(w_2\) are two non-zero complex constants that we can choose at will. In this way, the matrix \(\mathbb {S}=(\vec {v_1},\vec {v_2})\) reads as

$$\begin{aligned} \mathbb {S}=\frac{a_1(w_1+w_2)}{2(a_2+\lambda )}\sigma _0+i\frac{w_1-w_2}{2}\sigma _x+\frac{w_1+w_2}{2}\sigma _y+\frac{a_1(w_1-w_2)}{2(a_2+\lambda )}\sigma _z, \end{aligned}$$
(A.4)

while its inverse matrix \(\mathbb {S}^{-1}\) and its conjugate transpose matrix \(\mathbb {S}^{\dagger }\) are represented as follows:

$$\begin{aligned} \mathbb {S}^{-1}&=-\frac{a_2+\lambda }{2\lambda w_1 w_2} \left( \frac{a_1(w_1+w_2)}{2(a_2+\lambda )}\sigma _0-i\frac{w_1-w_2}{2}\sigma _x-\frac{w_1+w_2}{2}\sigma _y-\frac{a_1(w_1-w_2)}{2(a_2+\lambda )}\sigma _z\right) ,\nonumber \\ \mathbb {S}^{\dagger }&=\frac{a_1(\bar{w}_1+\bar{w}_2)}{2(a_2+\lambda )}\sigma _0-i\frac{\bar{w}_1-\bar{w}_2}{2}\sigma _x+\frac{\bar{w}_1+\bar{w}_2}{2}\sigma _y+\frac{a_1(\bar{w}_1-\bar{w}_2)}{2(a_2+\lambda )}\sigma _z. \end{aligned}$$
(A.5)

It is straightforward to prove that \(\mathbb {K}\) is diagonalizable by the similarity transformation \(\mathbb {S}^{-1}\mathbb {K}\mathbb {S}\), i.e.,

$$\begin{aligned} \mathbb {M}=\mathbb {S}^{-1}\mathbb {K}\mathbb {S}= \begin{pmatrix} \lambda &{}0\\ &{}\\ 0&{}-\lambda \end{pmatrix}. \end{aligned}$$
(A.6)

We have to highlight that the form of \(\mathbb {S}\) depends not only on \(w_1,w_2\) but also on the order of \(\vec {v_1},\vec {v_2}\), i.e., \(\mathbb {S}=(\vec {v_2},\vec {v_1})\) is a suitable similarity transformation that diagonalizes \(\mathbb {K}\). However, in that case the result has to be \(\mathbb {M}=\text{ diag }(-\lambda ,\lambda )\).

As we have mentioned, \(\mathbb {S}\) has no specific form. Nevertheless, in order to simplify the calculations, in this work we will consider the special case when \(w_1=w_2=1\) in Eq. (A.4). This case can be understood as the one leading to

$$\begin{aligned} \mathbb {S}&=\frac{a_1}{(a_2+\lambda )}\sigma _0+\sigma _y,\nonumber \\ \mathbb {S}^{-1}&=-\frac{a_1}{2\lambda }\sigma _0+\frac{a_2+\lambda }{2\lambda }\sigma _y,\nonumber \\ \mathbb {S}^{\dagger }&=\frac{a_1}{(a_2+\lambda )}\sigma _0+\sigma _y. \end{aligned}$$
(A.7)

Finally, it can be observed that if \(a_1=0\), \(\mathbb {S}^{-1}=\mathbb {S}^{\dagger }\), which is because for such a value \(\mathbb {K}\) becomes Hermitian and normal.

Appendix B Probability and current densities

The eigenstates of the Hamiltonian obtained from (16) are stationary. Hence

$$\begin{aligned} \rho _n(x,y,t)=\rho _n(x)=|\mathcal {N}_n|^2\bar{\Phi }^{\dagger }_n(z)\mathbb {S}^{\dagger }\mathbb {S}\bar{\Phi }_n(z), \end{aligned}$$
(B.1)

where the functions \(\bar{\Phi }^{\dagger }_n(z),\bar{\Phi }_n(z)\) depend on x since z is a change of variable and \(\mathcal {N}_n\) represents a normalization constant. By considering the matrix \(\mathbb {S}\) given in Eq. (A.7) we get

$$\begin{aligned} \rho _n(x)=\frac{2|\mathcal {N}_n|^2}{a_2+\lambda }\bar{\Phi }^{\dagger }_n(z)\left( a_2\sigma _0+a_1\sigma _y\right) \bar{\Phi }_n(z). \end{aligned}$$
(B.2)

Thus, the normalization constant can be chosen as \(\mathcal {N}_n=\sqrt{\frac{a_2+\lambda }{2(a_2+a_1I_n)}}\) where

$$\begin{aligned} I_n=2^{\delta _{0n}}\sqrt{\frac{v_x}{v_y}}(1-\delta _{0n})\int _{z^-}^{z^+}\frac{\phi _n^+(z)\phi _{n-1}^-(z)}{g(z)}\textrm{d}z. \end{aligned}$$
(B.3)

and then

$$\begin{aligned} \rho _n(x)=\frac{1}{(a_2+a_1I_n)} \left( a_2|\bar{\Phi }_n(z)|^2+2^{\delta _{0n}}(1-\delta _{0n})a_1\phi _n^+(z)\phi _{n-1}^-(z)\right) . \end{aligned}$$
(B.4)

In a similar way, we can compute the components of the current density \(\vec {\mathcal {J}_n}(x,y,t)\), which are given by

$$\begin{aligned} \mathcal {J}_{x,n}(x,y,t)&=\mathcal {J}_{x,n}(x) =\nu v_x|\mathcal {N}_n|^2\bar{\Phi }^{\dagger }_n(z)\left( \mathbb {S}^{\dagger }\sigma _x\mathbb {S}\right) \bar{\Phi }_n(z),\nonumber \\ \mathcal {J}_{y,n}(x,y,t)&=\mathcal {J}_{y,n}(x)=\nu |\mathcal {N}_n|^2\bar{\Phi }^{\dagger }_n(z) \left[ \mathbb {S}^{\dagger }\left( v_x\sigma _x+v_t\sigma _0\right) \mathbb {S}\right] \bar{\Phi }_n(z). \end{aligned}$$
(B.5)

After some calculations, they turn out to be

$$\begin{aligned} \mathcal {J}_{x,n}(x)&=-\frac{\nu v_x\lambda }{a_2+a_1I_n} \bar{\Phi }^{\dagger }_n(z) \sigma _x\bar{\Phi }(z)_n,\nonumber \\ \mathcal {J}_{y,n}(x)&=\frac{\nu }{a_2+a_1I_n} \left[ \left( a_1 v_y +a_2 v_t\right) |\bar{\Phi }_n(z)|^2 +2^{\delta _{0n}}(1-\delta _{0n})\left( a_1 v_t + a_2 v_y\right) \phi _n^+(z)\phi _{n-1}^-(z)\right] . \end{aligned}$$
(B.6)

We have to mark that the above expressions for the probability and current densities are only valid for the eigenstates of the Hamiltonian (2). On the other hand, the \(x-\)component of the current \(\mathcal {J}_n\) will be zero if the components \(\phi _{n}^{\pm }\) are real functions.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mojica-Zárate, J.A., O-Campa, D. & Díaz-Bautista, E. An algorithm for exact analytical solutions for tilted anisotropic Dirac materials. Eur. Phys. J. Plus 139, 272 (2024). https://doi.org/10.1140/epjp/s13360-024-05071-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05071-9

Navigation