Skip to main content
Log in

Enhancing quantum Otto engine performance in generalized external potential on Bose–Einstein condensation regime

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We examine a quantum Otto engine using both Bose–Einstein condensation (BEC) and normal Bose gas as working medium trapped in generalized external potential. We treated the engine quasi-statically and endoreversibly. Since the expansion and compression in both quasi-static and endoreversible take place isentropic, the expression of efficiency is similar. However, the power output in the quasi-static cycle is zero due to infinite and long stroke time. In contrast, with an endoreversible cycle, thermalization with two reservoirs takes place at a finite time. We use Fourier’s law of conduction to formulate the relation between temperature of medium and reservoir, making work depend on heating and cooling stroke time. Moreover, we maximized the power with respect to compression ratio \(\kappa\) to obtain efficiency at maximum power (EMP). We found that EMP is significantly higher when using BEC as a working medium; meanwhile, EMP with normal Bose gas is just Curzon–Ahlborn efficiency. We also investigate the effect of thermal contact time \(\tau\) with hot \((\tau _{h})\) and cold \((\tau _{l})\) reservoir on EMP. We found that when complete thermalization, \(\tau _{h}=\tau _{l}\), stroke time occurs, there are no significant differences. Nevertheless, while incomplete thermalization arises, adjusting various cooling and heating stroke time provides a significant result on EMP, which is much higher at \(\tau _{h}<\tau _{l}\) stroke time and lower at \(\tau _{h}>\tau _{l}\) stroke time. We conclude this incomplete thermalization leads to the condition where residual coherence emerges which enhances the EMP of the engine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data. [Authors’ comment: All data generated or analyzed during this study are included in this published article].

References

  1. S. Deffner, S. Campbell, Morgan & Claypool Publishers (2019). https://doi.org/10.1088/2053-2571/ab21c6

    Article  ADS  Google Scholar 

  2. R.V. Chamberlin, Entropy 17, 52–73 (2015). https://www.mdpi.com/1099-4300/17/1/52

  3. W. Dong, Nat. Commun. 14, 1824 (2023). https://doi.org/10.1038/s41467-023-36970-7

    Article  Google Scholar 

  4. F.J. Peña, N.M. Myers, D.Órdenes, F. Albarrán-Arriagada, P. Vargas, Entropy 25, 518 (2023). https://www.mdpi.com/1099-4300/25/3/518

  5. O. Galteland, D. Bedeaux, S. Kjelstrup, Nanomaterials 11, 165 (2021). https://www.mdpi.com/2079-4991/11/1/165

  6. B.A. Strøm, J. He, D. Bedeaux, S. Kjelstrup, Nanomaterials 10, 1691 (2020). https://www.mdpi.com/2079-4991/10/9/1691

  7. R. de Miguel, J.M. Rubí, Nanomaterials 10, 2471 (2020). https://www.mdpi.com/2079-4991/10/12/2471

  8. Y. Yin, L. Chen, F. Wu, Physica A 503, 58–70 (2018). https://doi.org/10.1016/j.physa.2018.02.202

    Article  ADS  MathSciNet  Google Scholar 

  9. B.A. Strøm, J.-M. Simon, S.K. Schnell, S. Kjelstrup, J. He, D. Bedeaux, Phys. Chem. Chem. Phys. 19, 9016–9027 (2017). https://doi.org/10.1039/C7CP00874K

    Article  Google Scholar 

  10. S. Kjelstrup, S.K. Schnell, T.J.H. Vlugt, J.-M. Simon, A. Bardow, D. Bedeaux, T. Trinh, Adv. Nat. Sci.: Nanosci. Nanotechnol. 5, 023002 (2014). https://doi.org/10.1088/2043-6262/5/2/023002

    Article  ADS  Google Scholar 

  11. J. Kim, S.-H. Oh, D. Yang, J. Kim, M. Lee, K. An, Nat. Photonics 16, 707 (2022). https://doi.org/10.1038/s41566-022-01039-2

    Article  ADS  Google Scholar 

  12. H.E.D. Scovil, E.O. Schulz-DuBois, Phys. Rev. Lett. 2, 262 (1959). https://doi.org/10.1103/PhysRevLett.2.262

    Article  ADS  Google Scholar 

  13. M. Kim, M. Scully, A. Svidzinsky, Nat. Photonics 16, 669 (2022). https://doi.org/10.1038/s41566-022-01076-x

    Article  ADS  Google Scholar 

  14. N.M. Myers, O. Abah, S. Deffner, AVS Quantum Sci. 4, 027101 (2022). https://doi.org/10.1116/5.0083192

    Article  ADS  Google Scholar 

  15. H.T. Quan, Y.-X. Liu, C.P. Sun, F. Nori, Phys. Rev. E 76, 031105 (2007). https://doi.org/10.1103/PhysRevE.76.031105

    Article  ADS  MathSciNet  Google Scholar 

  16. N. Papadatos, Int. J. Theor. Phys. 60, 4210 (2021). https://doi.org/10.1007/s10773-021-04969-9

    Article  Google Scholar 

  17. L. Li, H. Li, W. Yu, Y. Hao, L. Li, J. Zou, J. Phys. B: Atom. Mol. Opt. Phys. 54, 215501 (2021). https://doi.org/10.1088/1361-6455/ac3c93

    Article  ADS  Google Scholar 

  18. S. Singh, O. Abah. arXiv:2008.05002 [condmat.stat-mech] (2020)

  19. O. Abah, M. Paternostro, Phys. Rev. E 99, 022110 (2019). https://doi.org/10.1103/PhysRevE.99.022110

    Article  ADS  Google Scholar 

  20. F. Altintas, Physica A 523, 40 (2019). https://doi.org/10.1016/j.physa.2019.01.144

    Article  ADS  MathSciNet  Google Scholar 

  21. A. Fahriza, T.E.P. Sutantyo, Z. Abdullah, Eur. Phys. J. Plus 137, 1030 (2022). https://doi.org/10.1140/epjp/s13360-022-03235-z

    Article  Google Scholar 

  22. A. Fahriza, T.E.P. Sutantyo, J. Ilmu Fisika 14, 95–107 (2022). https://doi.org/10.25077/jif.14.2.95-107.2022

    Article  Google Scholar 

  23. F. Abdillah, Y.D. Saputra, J. Phys.: Confer. Ser. 1726, 012004 (2021). https://doi.org/10.1088/1742-6596/1726/1/012004

    Article  Google Scholar 

  24. Y.D. Saputra, J. Phys.: Confer. Ser. 1726, 012016 (2021). https://doi.org/10.1088/1742-6596/1726/1/012016

    Article  Google Scholar 

  25. M.H. Ahmadi, M.A. Nazari, M. Feidt, Int. J. Ambient Energy 40, 600 (2019). https://doi.org/10.1080/01430750.2017.1423386

    Article  Google Scholar 

  26. R. Wang, J. Wang, J. He, Y. Ma, Phys. Rev. E 86, 021133 (2012). https://doi.org/10.1103/PhysRevE.86.021133

    Article  ADS  Google Scholar 

  27. S. Singh, S. Rebari, Eur. Phys. J. B 93, 150 (2020). https://doi.org/10.1140/epjb/e2020-10217-0

    Article  ADS  Google Scholar 

  28. D.P. Setyo, E. Latifah, A. Hidayat, H. Wisodo, J. Penelit. Fisika Apl. (JPFA) 8, 25–32 (2018). https://doi.org/10.26740/jpfa.v8n1.p25-32

    Article  Google Scholar 

  29. C.M. Bender, D.C. Brody, B.K. Meister, J. Phys. A: Math. Gen. 33, 4427 (2000). https://doi.org/10.1088/0305-4470/33/24/302

    Article  ADS  Google Scholar 

  30. C.M. Bender, D.C. Brody, B.K. Meister, Proc. R. Soc. Lond., Ser. A: Math., Phys. Eng. Sci. 458, 1519 (2002). https://doi.org/10.1098/rspa.2001.0928

    Article  ADS  Google Scholar 

  31. F. Moukalled, R.Y. Nuwayhid, N. Noueihed, Int. J. Energy Res. 19, 377 (1995). https://doi.org/10.1002/er.4440190503

    Article  Google Scholar 

  32. I.H. Belfaqih, T.E.P. Sutantyo, T.B. Prayitno, A. Sulaksono, AIP Confer. Proc. 1677, 040010 (2015). https://doi.org/10.1063/1.4930654

    Article  Google Scholar 

  33. T.E.P. Sutantyo, J. Fis. Unand 9, 142 (2020). https://doi.org/10.25077/jfu.9.1.142-149.2020

    Article  Google Scholar 

  34. T.E.P. Sutantyo, I.H. Belfaqih, T.B. Prayitno, AIP Confer. Proc. 1677, 040011 (2015). https://doi.org/10.1063/1.4930655

    Article  Google Scholar 

  35. M.O. Scully, M.S. Zubairy, G.S. Agarwal, H. Walther, Science 299, 862 (2003). https://doi.org/10.1126/science.1078955

    Article  ADS  Google Scholar 

  36. S. Deffner, Entropy 20, 875 (2018). https://doi.org/10.3390/e20110875

    Article  ADS  Google Scholar 

  37. T.D. Kieu, Eur. Phys. J. D—Atom. Mol., Opt. Plasma Phys. 39, 115 (2006). https://doi.org/10.1140/epjd/e2006-00075-5

    Article  Google Scholar 

  38. T.D. Kieu, Phys. Rev. Lett. 93, 140403 (2004). https://doi.org/10.1103/PhysRevLett.93.140403

    Article  ADS  MathSciNet  Google Scholar 

  39. F.L. Curzon, B. Ahlborn, Am. J. Phys. 43, 22 (1975). https://doi.org/10.1119/1.10023

    Article  ADS  Google Scholar 

  40. O. Abah, J. Roßnagel, G. Jacob, S. Deffner, F. Schmidt-Kaler, K. Singer, E. Lutz, Phys. Rev. Lett. 109, 203006 (2012). https://doi.org/10.1103/PhysRevLett.109.203006

    Article  ADS  Google Scholar 

  41. R. Kosloff, Y. Rezek, Entropy 19, 136 (2017). https://doi.org/10.3390/e19040136

    Article  ADS  Google Scholar 

  42. N.M. Myers, F.J. Peña, O. Negrete, P. Vargas, G.D. Chiara, S. Deffner, New J. Phys. 24, 025001 (2022). https://doi.org/10.1088/1367-2630/ac47cc

    Article  ADS  Google Scholar 

  43. N.M. Myers, S. Deffner, Phys. Rev. E 101, 012110 (2020). https://doi.org/10.1103/PhysRevE.101.012110

    Article  ADS  Google Scholar 

  44. J. Roßnagel, O. Abah, F. Schmidt-Kaler, K. Singer, E. Lutz, Phys. Rev. Lett. 112, 030602 (2014). https://doi.org/10.1103/PhysRevLett.112.030602

    Article  ADS  Google Scholar 

  45. Z. Smith, P.S. Pal, S. Deffner, J. Non-Equilib. Thermodyn. 45, 305 (2020). https://doi.org/10.1515/jnet-2020-0039

    Article  ADS  Google Scholar 

  46. Z. Zettira, T.E.P. Sutantyo, J. Ilmu Fis. 16, 22–33 (2024). https://doi.org/10.25077/jif.16.1.22-33.2024

    Article  Google Scholar 

  47. L. Erbay, H. Yavuz, Energy 22, 645 (1997). https://doi.org/10.1016/S0360-5442(96)001

    Article  Google Scholar 

  48. H.S. Leff, Am. J. Phys. 55, 602 (1987). https://doi.org/10.1119/1.15071

    Article  ADS  Google Scholar 

  49. N.M. Myers, F.J. Peña, N. Cortés, P. Vargas (2021). arXiv:2212.03286 [cond-mat.stat-mech]. https://doi.org/10.48550/arXiv.2212.03286

  50. O. Fialko, D.W. Hallwood, Phys. Rev. Lett. 108, 085303 (2012). https://doi.org/10.1103/PhysRevLett.108.085303

    Article  ADS  Google Scholar 

  51. M. Gluza, J.A. Sabino, N.H. Ng, G. Vitagliano, M. Pezzutto, Y. Omar, I. Mazets, M. Huber, J. Schmiedmayer, J. Eisert, PRX Quantum 2, 030310 (2021). https://doi.org/10.1103/PRXQuantum.2.030310

    Article  ADS  Google Scholar 

  52. J. Li, E.Y. Sherman, A. Ruschhaupt, Phys. Rev. A 106, L030201 (2022). https://doi.org/10.1103/PhysRevA.106.L030201

    Article  ADS  Google Scholar 

  53. J. Li, T. Fogarty, S. Campbell, X. Chen, T. Busch, New J. Phys. 20, 015005 (2018). https://doi.org/10.1088/1367-2630/aa9cd8

    Article  ADS  Google Scholar 

  54. A. Einstein, Physikalisch-mathematische Klasse No. bk. 2 (Verlag d. Akad. d. Wiss., 1925)

  55. Bose, Z. Phys. 26, 178 (1924). https://doi.org/10.1007/BF01327326

  56. M.H. Anderson, J.R. Ensher, M.R. Matthews, C. E. in Collected Papers of Carl Wieman (World Scientific, 2008), pp. 453–456

  57. K.B. Davis, M.O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, W. Ketterle, Phys. Rev. Lett. 75, 3969 (1995). https://doi.org/10.1103/PhysRevLett.75.3969

    Article  ADS  Google Scholar 

  58. C.C. Bradley, C.A. Sackett, R.G. Hulet, Phys. Rev. Lett. 78, 985 (1997). https://doi.org/10.1103/PhysRevLett.78.985

    Article  ADS  Google Scholar 

  59. C.C. Bradley, C.A. Sackett, J.J. Tollett, R.G. Hulet, Phys. Rev. Lett. 75, 1687 (1995). https://doi.org/10.1103/PhysRevLett.75.1687

    Article  ADS  Google Scholar 

  60. A.L. Gaunt, T.F. Schmidutz, I. Gotlibovych, R.P. Smith, Z. Hadzibabic, Phys. Rev. Lett. 110, 200406 (2013). https://doi.org/10.1103/PhysRevLett.110.200406

    Article  ADS  Google Scholar 

  61. V. Bagnato, D.E. Pritchard, D. Kleppner, Phys. Rev. A 35, 4354 (1987). https://doi.org/10.1103/PhysRevA.35.4354

    Article  ADS  Google Scholar 

  62. R. Pathria P.D. Beale, in Statistical Mechanics, edited by R. Pathria and P. D. Beale, 3rd edn. (Academic Press, Boston, 2011), pp. 583–635

  63. L. Pitaevskii, S. Stringari, Bose–Einstein Condensation and Superfluidity (Oxford University Press, New York, 2016)

    Book  Google Scholar 

  64. K. Hoffmann, J. Burzler, S. Schubert, J. Non-Equilib. Thermodyn. 22, 311 (1997). https://doi.org/10.1515/jnet.1997.22.4.311

    Article  Google Scholar 

  65. Y.A. Çengel, M.A. Boles, Thermodynamics: An Engineering Approach, 5th edn. (McGraw-Hill, New York, 2008)

    Google Scholar 

  66. J. Wang, J. He, J. Appl. Phys. 111, 043505 (2012). https://doi.org/10.1063/1.3681295

    Article  ADS  Google Scholar 

  67. H. Wang, S. Liu, J. He, J. Appl. Phys. 105, 083534 (2021). https://doi.org/10.1063/1.3103315

    Article  ADS  Google Scholar 

  68. D.C. Aveline, J.R. Williams, E.R. Elliott, C. Dutenhoffer, J.R. Kellogg, J.M. Kohel, N.E. Lay, K. Oudrhiri, R.F. Shotwell, N. Yu, R.J. Thompson, Nature 582, 193 (2020). https://doi.org/10.1038/s41586-020-2346-1

    Article  ADS  Google Scholar 

  69. J.D. Reppy, B.C. Crooker, B. Hebral, A.D. Corwin, J. He, G.M. Zassenhaus, Phys. Rev. Lett. 84, 2060 (2000). https://doi.org/10.1103/PhysRevLett.84.2060

    Article  ADS  Google Scholar 

  70. Y. Zheng, D. Poletti, Phys. Rev. E 90, 012145 (2014). https://doi.org/10.1103/PhysRevE.90.012145

    Article  ADS  Google Scholar 

  71. S. Çakmak, F. Altintas, A. Gençten, Ö.E. Müstecaplıoğlu, Eur. Phys. J. D 71, 75 (2017). https://doi.org/10.1140/epjd/e2017-70443-1

    Article  ADS  Google Scholar 

  72. S. Çakmak, Ö.E. Müstecaplıoğlu, Phys. Rev. E 99, 032108 (2019). https://doi.org/10.1103/PhysRevE.99.032108

    Article  ADS  Google Scholar 

  73. J. Wang, Z. Wu, J. He, Phys. Rev. E 85, 041148 (2012). https://doi.org/10.1103/PhysRevE.85.041148

    Article  ADS  Google Scholar 

  74. R. Wang, J. Wang, J. He, Y. Ma, Phys. Rev. E 87, 042119 (2013). https://doi.org/10.1103/PhysRevE.87.042119

    Article  ADS  Google Scholar 

  75. Z. Smith, P.S. Pal, S. Deffner, J. Non-Equilib. Thermodyn. 45, 305 (2020). https://doi.org/10.1515/jnet-2020-0039

    Article  ADS  Google Scholar 

  76. A.J. Roncaglia, F. Cerisola, J.P. Paz, Phys. Rev. Lett. 113, 250601 (2014). https://doi.org/10.1103/PhysRevLett.113.250601

    Article  ADS  Google Scholar 

  77. S. Mahajan, Am. J. Phys. 88, 431 (2020). https://doi.org/10.1119/10.0001197

    Article  ADS  Google Scholar 

  78. S. Chand, S. Dasgupta, A. Biswas, Phys. Rev. E 103, 032144 (2021). https://doi.org/10.1103/PhysRevE.103.032144

    Article  ADS  Google Scholar 

  79. A. del Campo, J. Goold, M. Paternostro, Sci. Rep. 4, 6208 (2014). https://doi.org/10.1038/srep06208

    Article  ADS  Google Scholar 

  80. A. del Campo, Phys. Rev. Lett. 111, 100502 (2013). https://doi.org/10.1103/PhysRevLett.111.100502

    Article  Google Scholar 

  81. P.A. Camati, J.F.G. Santos, R.M. Serra, Phys. Rev. A 99, 062103 (2019). https://doi.org/10.1103/PhysRevA.99.062103

    Article  ADS  Google Scholar 

  82. F. Plastina, A. Alecce, T.J.G. Apollaro, G. Falcone, G. Francica, F. Galve, N. Lo Gullo, R. Zambrini, Phys. Rev. Lett. 113, 260601 (2014). https://doi.org/10.1103/PhysRevLett.113.260601

    Article  ADS  Google Scholar 

  83. D.V. Schroeder, An Introduction to Thermal Physics (American Association of Physics Teachers, 1999)

  84. T. Mihaescu, A. Isar, Eur. Phys. J. Plus 139, 82 (2024). https://doi.org/10.1140/epjp/s13360-024-04869-x

    Article  Google Scholar 

  85. W. Ketterle, H.-J. Miesner, Phys. Rev. A 56, 3291 (1997). https://doi.org/10.1103/PhysRevA.56.3291

    Article  ADS  Google Scholar 

  86. E.A. Donley, N.R. Claussen, S.T. Thompson, C.E. Wieman, Nature 417, 529 (2002). https://doi.org/10.1038/417529a

    Article  ADS  Google Scholar 

  87. C.C. Bradley, C.A. Sackett, J.J. Tollett, R.G. Hulet, Phys. Rev. Lett. 75, 1687 (1995). https://doi.org/10.1103/PhysRevLett.75.1687

    Article  ADS  Google Scholar 

  88. A. Görlitz, J.M. Vogels, A.E. Leanhardt, C. Raman, T.L. Gustavson, J.R. Abo-Shaeer, A.P. Chikkatur, S. Gupta, S. Inouye, T. Rosenband, W. Ketterle, Phys. Rev. Lett. 87, 130402 (2001). https://doi.org/10.1103/PhysRevLett.87.130402

    Article  ADS  Google Scholar 

Download references

Acknowledgements

TEPS thanks the Faculty of Mathematics and Natural Sciences, Andalas University, for financially supporting this research with research Grant No. 04/UN.16.03.D/PP/FMIPA/2022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trengginas E. P. Sutantyo.

Ethics declarations

Conflicts of interest

The author declares that there is no conflict of interest regarding the publication of this manuscript. In addition, the ethical issues, including plagiarism, informed consent, misconduct, data fabrication and/or falsification, double publication and/or submission, and redundancies have been completely observed by the authors.

Additional information

This work was preprinted on arXiv:2307.01805 [cond-mat.quant-gas].

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zettira, Z., Fahriza, A., Abdullah, Z. et al. Enhancing quantum Otto engine performance in generalized external potential on Bose–Einstein condensation regime. Eur. Phys. J. Plus 139, 282 (2024). https://doi.org/10.1140/epjp/s13360-024-05051-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05051-z

Navigation