Skip to main content
Log in

Reproducing countless hidden attractors in a memristive system based on offset boosting

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Offset control has attracted great research in recent years, and the introduction of special offset functions can produce homogenous multistability; however, the uncountably many attractors caused by offset boosting have not been focused. In this work, a 4D memristive chaotic model with uncountably many hidden attractors is designed. More interestingly, two-dimensional offset boosting can be achieved by a constant that simply switches the two variables of the offset by combining different initial values with the offset parameter. The offset parameters of variables are hidden when offset parameters cancel each other out; variable boosting can also be achieved only by varying initial conditions, which present a special regime of homogenous multistability with uncountably many continuously distributed attractors. This system provides the first example with uncountably many hidden attractors without any periodic function involved. Finally, the proposed memristive circuit with chaotic behavior is implemented through printed circuit board; circuit implementation agrees well with the numerical explorations and theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. O.E. Rössler, An equation for continuous chaos. Phys. Lett. A 57(5), 397–398 (1976)

    Article  ADS  Google Scholar 

  2. O.E. Rössler, Chaotic behavior in simple reaction systems. Zeitschrift für Naturforschung A 31(3–4), 259–264 (1976)

    Article  ADS  Google Scholar 

  3. X. Zhang, C. Li, K. Huang et al., A chaotic oscillator with three independent offset boosters and its simplified circuit implementation. IEEE Trans. Circuits Syst. II Express Briefs 71(1), 51–55 (2024)

    Google Scholar 

  4. P. He, H. Liu, G. Li et al., A general method for generating multi-scroll and multi-wing chaotic systems and its implementation of attractor reproduction. Phys. Scr. 98(8), 085232 (2023)

    Article  ADS  Google Scholar 

  5. H. Peng, M. Ji’e, X. Du et al. Design of pseudorandom number generator based on a controllable multi-double-scroll chaotic system. Chaos Solitons Fractals 174:113803 (2023).

  6. A.K. Singh, K. Chatterjee, A. Singh, An image security model based on chaos and DNA cryptography for IIoT images. IEEE Trans. Industr. Inf. 19(2), 1957–1964 (2022)

    Article  Google Scholar 

  7. Z. Deng, C. Wang, H. Lin et al., A memristive spiking neural network circuit with selective supervised attention algorithm. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 42(8), 2604–2617 (2023)

    Article  Google Scholar 

  8. C. Xu, C. Wang, J. Jiang et al., Memristive circuit implementation of context-dependent emotional learning network and its application in multitask. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 41(9), 3052–3065 (2021)

    Article  Google Scholar 

  9. E. Petavratzis, C. Volos, I. Stouboulos, Experimental study of terrain coverage of an autonomous chaotic mobile robot. Integration 90, 104–114 (2023)

    Article  Google Scholar 

  10. V. Kamdoum Tamba, A.L. Mbanda Biamou, F. Kapche Tagne et al., Hidden extreme multistability in a smooth flux-controlled memristor based four-dimensional chaotic system and its application in image encryption. Phys. Scr. 99(2), 025210 (2024)

    Article  ADS  Google Scholar 

  11. H. Lin, C. Wang, L. Cui et al., Brain-like initial-boosted hyperchaos and application in biomedical image encryption. IEEE Trans. Industr. Inf. 18(12), 8839–8850 (2022)

    Article  Google Scholar 

  12. J. Cao, X. Zhang, H. Cheng et al., Emerging dynamic memristors for neuromorphic reservoir computing. Nanoscale 14(2), 289–298 (2022)

    Article  CAS  PubMed  Google Scholar 

  13. J. Singh, S. Singh, N. Paras, Design and integration of vertical TFET and memristor for better realization of logical functions. SILICON 15(2), 783–792 (2023)

    Article  CAS  Google Scholar 

  14. O.M. Njimah, J. Ramadoss, A.N.K. Telem, J. Kengne, K. Rajagopal, Coexisting oscillations and four-scroll chaotic attractors in a pair of coupled memristor-based Duffing oscillators: Theoretical analysis and circuit simulation. Chaos Solitons Fractals 166, 112983 (2023)

    Article  Google Scholar 

  15. C. Chen, F. Min, Y. Zhang et al., Memristive electromagnetic induction effects on Hopfield neural network. Nonlinear Dyn. 106, 2559–2576 (2021)

    Article  Google Scholar 

  16. M. Chen, M. Sun, H. Bao, Y. Hu, B. Bao, Flux–charge analysis of two-memristor-based Chua’s circuit: dimensionality decreasing model for detecting extreme multistability. IEEE Trans. Industr. Electron. 67(3), 2197–2206 (2019)

    Article  Google Scholar 

  17. H. Lin, C. Wang, Influences of electromagnetic radiation distribution on chaotic dynamics of a neural network. Appl. Math. Comput. 369, 124840 (2020)

    MathSciNet  Google Scholar 

  18. L. Minati, L.V. Gambuzza, W.J. Thio, J. Sprott, M. Frasca, A chaotic circuit based on a physical memristor. Chaos, Solitons Fractals 138, 109990 (2020)

    Article  MathSciNet  Google Scholar 

  19. P. Das, S. Mandal, A physical memristor-based chaotic system and its application in colour image encryption scheme. Phys. Scr. 98(11), 115252 (2023)

    Article  ADS  Google Scholar 

  20. C. Li, J.C. Sprott, Variable-boostable chaotic flows. Optik 127(22), 10389–10398 (2016)

    Article  ADS  Google Scholar 

  21. B.A. Mezatio, M.T. Motchongom, B.R.W. Tekam et al., A novel memristive 6D hyperchaotic autonomous system with hidden extreme multistability. Chaos, Solitons Fractals 120, 100–115 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  22. Z.T. Njitacke, R.L.T. Mogue, J. Kengne et al., Hysteretic dynamics, space magnetization and offset boosting in a third-order memristive system. Iran J Sci Technol Trans Electrical Eng 44, 413–429 (2020)

    Article  Google Scholar 

  23. X. Zhang, C. Li, E. Dong et al., A conservative memristive system with amplitude control and offset boosting. Int. J. Bifurcation Chaos 32(04), 2250057 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  24. X. Zhang, C. Li, T. Lei et al., Offset boosting in a memristive hyperchaotic system. Phys. Scr. 99(1), 015247 (2023)

    Article  ADS  Google Scholar 

  25. I.S. Doubla, B. Ramakrishnan, Z.N. Tabekoueng et al., Infinitely many coexisting hidden attractors in a new hyperbolic-type memristor-based HNN. Euro. Phys. J. Special Topics 231(11), 2371–2385 (2022)

    Article  ADS  Google Scholar 

  26. Q. Lai, Z. Wan, P.D.K. Kuate, Generating grid multi-scroll attractors in memristive neural networks. IEEE Trans. Circuits Syst. I Regul. Pap. 70(3), 1324–1336 (2022)

    Article  Google Scholar 

  27. C. Li, J.C. Sprott, H. Xing, Constructing chaotic systems with conditional symmetry. Nonlinear Dyn. 87, 1351–1358 (2017)

    Article  Google Scholar 

  28. C. Li, R. Wang, X. Ma et al., Embedding any desired number of coexisting attractors in memristive system. Chin. Phys. B 30(12), 120511 (2021)

    Article  ADS  Google Scholar 

  29. C. Li, T. Lei, X. Wang X, et al. Dynamics editing based on offset boosting. Chaos Interdisciplinary J. Nonlinear Sci., 30(6) (2020).

  30. C. Li, T. Lei, Z. Liu. Offset parameter cancellation produces countless coexisting attractors. Chaos Interdisciplinary J. Nonlinear Sci. 2022, 32(12), 121104 (2022).

  31. M. Chen, X. Ren, H.G. Wu et al., Periodically varied initial offset boosting behaviors in a memristive system with cosine memductance. Front. Inform. Technol. Electronic Eng. 20(12), 1706–1716 (2019)

    Article  Google Scholar 

  32. H. Lin, C. Wang, C. Xu et al., A memristive synapse control method to generate diversified multistructure chaotic attractors. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 42(3), 942–955 (2022)

    Article  Google Scholar 

  33. Q. Lai, Z. Wan, H. Zhang et al., Design and analysis of multiscroll memristive hopfield neural network with adjustable memductance and application to image encryption. IEEE Trans. Neural Netw. Learn. Syst. 34(10), 7824–7837 (2022)

    Article  Google Scholar 

  34. Q. Lai, P.D.K. Kuate, F. Liu et al., An extremely simple chaotic system with infinitely many coexisting attractors. IEEE Trans. Circuits Syst. II Express Briefs 67(6), 1129–1133 (2020)

    Google Scholar 

  35. H. Bao, W. Liu, J. Ma et al., Memristor initial-offset boosting in memristive HR neuron model with hidden firing patterns. Int. J. Bifurcation Chaos 30(10), 2030029 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  36. H. Lin, C. Wang, Y. Sun et al., Generating-scroll chaotic attractors from a memristor-based magnetized hopfield neural network. IEEE Trans. Circuits Syst. II Express Briefs 70(1), 311–315 (2023)

    Google Scholar 

  37. H. Bao, M. Hua, J. Ma et al., Offset-control plane coexisting behaviors in two-memristor-based Hopfield neural network. IEEE Trans. Industr. Electron. 70(10), 10526–10535 (2023)

    Article  Google Scholar 

  38. H. Lin, C. Wang, F. Yu et al., An extremely simple multiwing chaotic system: dynamics analysis, encryption application, and hardware implementation. IEEE Trans. Industr. Electron. 68(12), 12708–12719 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (Grant No. 62371242) and a Project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunbiao Li.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Li, C., Gao, X. et al. Reproducing countless hidden attractors in a memristive system based on offset boosting. Eur. Phys. J. Plus 139, 187 (2024). https://doi.org/10.1140/epjp/s13360-024-04984-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-04984-9

Navigation