Skip to main content
Log in

Unified catalytic entropy principles of general states

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The second law of thermodynamics dictates that entropy tends to increase, leading to a notion of disorder in thermostatistics. This principle applies to both quantum thermostatistics, where the von Neumann entropy is used, and nonextensive quantum thermostatistics, which employs the Tsallis entropy. In this work, we provide operational characterizations of general entropy measures by utilizing catalytic transformations or dephasing operations on unknown states. We introduce a catalytic principle that aligns with the second law of thermodynamics, encompassing both quantum thermostatistics and nonextensive quantum thermostatistics. This principle uncovers novel features that go beyond the second law of thermodynamics by maximizing the cross-entropy during irreversible catalytic procedures. Our findings have practical implications for asymptotic tasks such as universal quantum source encoding, even when only incomplete information is available. We apply these results to single-shot state transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

This work has no related data.

Notes

  1. Supplementary Information including the proof of Theorem 1 for different quantum entropies including Refs. [1, 11, 12, 14, 21,22,23,24,25, 28,29,30,31,32,33,34,35,36,37,38,39,40].

References

  1. J. von Neumann, Thermodynamik quantummechanischer Gesamheiten. Gott. Nach. 1, 273–291 (1927)

    Google Scholar 

  2. A. Kitaev, J. Preskill, Topological entanglement entropy. Phys. Rev. Lett. 96, 110404 (2006)

    Article  MathSciNet  PubMed  ADS  Google Scholar 

  3. J. Eisert, M. Cramer, M.B. Plenio, Colloquium: area laws for the entanglement entropy. Rev. Mod. Phys. 82, 277 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  4. N. Laflorencie, Quantum entanglement in condensed matter systems. Phys. Rep. 646, 1 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  5. B. Schumacher, Quantum coding. Phys. Rev. A 51, 2738 (1995)

    Article  MathSciNet  CAS  PubMed  ADS  Google Scholar 

  6. C.H. Bennett, H.J. Bernstein, S. Popescu, B. Schumacher, Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046 (1996)

    Article  CAS  PubMed  ADS  Google Scholar 

  7. C. Majenz, M. Berta, F. Dupuis, R. Renner, M. Christandl, One-shot quantum state exchange. Phys. Rev. Lett. 118, 080503 (2017)

    Article  MathSciNet  PubMed  ADS  Google Scholar 

  8. F.G.S.L. Brandao, M. Horodecki, J. Oppenheim, J.M. Renes, R.W. Spekkens, Resource theory of quantum states out of thermal equilibrium. Phys. Rev. Lett. 111, 250404 (2013)

    Article  PubMed  ADS  Google Scholar 

  9. N. Datta, Min- and max-relative entropies and a new entanglement monotone. IEEE Trans. Inf. Theory 55, 2816–2826 (2009)

    Article  MathSciNet  Google Scholar 

  10. P. Boes, H. Wilming, R. Gallego, J. Eisert, Catalytic quantum randomness. Phys. Rev. X 8, 041016 (2018)

    CAS  Google Scholar 

  11. P. Boes, J. Eisert, R. Gallego, M.P. Muller, H. Wilming, Von Neumann entropy from unitarity. Phys. Rev. Lett. 122, 210402 (2019)

    Article  CAS  PubMed  ADS  Google Scholar 

  12. A. Renyi, On Measures of Information and Entropy, in Proceedings of Fourth Berkeley Symposium on Mathematics, Statistics and Probability, pp. 547–561 (1960)

  13. M. Headrick, Entanglement Renyi entropies in holographic theories. Phys. Rev. D 82, 126010 (2010)

    Article  ADS  Google Scholar 

  14. C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 52, 479 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  15. C. Tsallis, Nonextensive statistics: theoretical, experimental and computational evidences and connections. Braz. J. Phys. 29, 1–35 (1999)

    Article  CAS  ADS  Google Scholar 

  16. L. Gamero, A. Plastino, M. Torres, Wavelet anayslis and nonlinear dynamics in a nonextensive setting. Phys. A 246, 487–509 (1997)

    Article  Google Scholar 

  17. A.S. Holevo, Quantum coding theorems. Russ. Math. Surv. 53, 1295–1331 (1998)

    Article  MathSciNet  Google Scholar 

  18. S. Abe, A.K. Rajagopal, Validity of the second law in nonextensive quantum thermodynamics. Phys. Rev. Lett. 91, 120601 (2003)

    Article  PubMed  ADS  Google Scholar 

  19. T. Mendes-Santos, G. Giudici, R. Fazio, M. Dalmonte, von Neumann entanglement entropies without wave functions. New J. Phys. 22, 013044 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  20. J. D’Emidio, Entanglement entropy from nonequilibrium work. Phys. Rev. Lett. 124, 110602 (2020)

    Article  MathSciNet  PubMed  ADS  Google Scholar 

  21. S. Abe, Axioms and uniqueness theorem for Tsallis entropy. Phys. Lett. A 271, 74–79 (2000)

    Article  MathSciNet  CAS  ADS  Google Scholar 

  22. S. Furuichi, On uniqueness Theorems for Tsallis entropy and Tsallis relative entropy. IEEE Trans. Inf. Theory 51, 3638–3645 (2005)

    Article  MathSciNet  Google Scholar 

  23. C. Tsallis, Approach of complexity in nature: entropic nonuniqueness. Axioms 5, 5030020 (2016)

    Article  Google Scholar 

  24. F. Nielsen, R. Nock, A closed-form expression for the Sharma-Mittal entropy of exponential families. J. Phys. A 45, 032003 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  25. E.T. Jaynes, Information theory and statistical mechanics. Phys. Rev. 106, 620–630 (1957)

    Article  MathSciNet  ADS  Google Scholar 

  26. R. Jozsa, M. Horodecki, P. Horodecki, R. Horodecki, Universal quantum information compression. Phys. Rev. Lett. 81, 1714 (1998)

    Article  CAS  ADS  Google Scholar 

  27. M. Hayashi, K. Matsumoto, Quantum universal variable length source coding. Phys. Rev. A 66, 022311 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  28. C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)

    Article  MathSciNet  Google Scholar 

  29. H. Araki, E.H. Lieb, Entropy inequalities. Commun. Math. Phys. 18, 160–170 (1970)

    Article  MathSciNet  ADS  Google Scholar 

  30. E.T. Jaynes, Concentration of distributions at entropy maxima, in E. T. Jaynes: Papers on Probability, Statistics and Statistical Physics. ed. by R.D. Rosenkrantz (D. Reidel, Dordrecht, 1979), p.315

    Google Scholar 

  31. G. Hardy, J.E. Littlewood, G. Polya, Inequalities, 2nd edn. (Cambridge University Press, Cambridge, 1991)

    Google Scholar 

  32. I. Sason, S. Verdu, \(f\)-Divergence inequalities. IEEE Trans. Inf. Theory 62, 5973–6006 (2016)

    Article  MathSciNet  Google Scholar 

  33. F. Liese, I. Vajda, Convex Statistical Distances, vol. 95, Germany, Leipzig (1987)

  34. A. Bassi, G.C. Ghirardi, A general scheme for ensemble purification. Phys. Lett. A 309, 24–28 (2003)

    Article  MathSciNet  CAS  ADS  Google Scholar 

  35. K.K. Nambiar, P.K. Varma, V. Saroch, An axiomatic definition of Shannon’s entropy. App. Math. Lett. 5, 45–46 (1992)

    Article  MathSciNet  Google Scholar 

  36. H. Suyari, Generalization of Shannon–Khinchin axioms to nonextensive systems and the uniqueness theorem for the nonextensive entropy. IEEE Trans. Inf. Theory 50, 1783–1787 (2004)

    Article  MathSciNet  Google Scholar 

  37. J.H. Havrda, F. Charvat, Quantification method of classification processes, concept of structural \(\alpha \)-entropy. Kybernetika 3, 30–35 (1967)

    MathSciNet  Google Scholar 

  38. Z. Daroczi, Generalized information functions. Inf. Control 16, 36–51 (1970)

    Article  MathSciNet  Google Scholar 

  39. C. Davis, All convex invariant functions of hermitian matrices. Arch. Math. 8, 276–278 (1957)

    Article  MathSciNet  Google Scholar 

  40. A.R. Barron, Entropy and the central limit theorem. Ann. Prob. 14, 336–342 (1986)

    Article  MathSciNet  Google Scholar 

  41. H. Maassen, J.B.M. Uffink, Generalized entropic uncertainty relations. Phys. Rev. Lett. 60, 1103 (1988)

    Article  MathSciNet  CAS  PubMed  ADS  Google Scholar 

  42. R.L. Frank, E.H. Lieb, Entropy and the uncertainty principle. Ann. Henri Poincare 13, 1711–1717 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  43. J. Watrous, The Theory of Quantum Information (Cambridge University Press, Cambridge, 2018)

    Book  Google Scholar 

  44. R. Bhatia, Matrix Analysis, vol. 169 (Springer, Berlin, 1997)

    Google Scholar 

  45. I. Csiszar, J. Korner, Information Theory: Coding Theorems for Discrete Memoryless Systems (Academic Press, New York, 1981)

    Google Scholar 

  46. S. Rethinasamy, M. M. Wilde, Relative entropy and catalytic relative majorization. arXiv:1912.04254v3 (2020)

  47. G. Gour, M.P. Muller, V. Narasimhachar, R.W. Spekkens, N. Yunger Halpern, The resource theory of informational nonequilibrium in thermodynamics. Phys. Rep. 583, 1 (2015)

    Article  MathSciNet  CAS  ADS  Google Scholar 

  48. H. Wilming, Entropy and reversible catalysis. arXiv:2012.05573 (2020)

  49. M. Owari, S.L. Braunstein, K. Nemoto, M. Murao, \(\epsilon \)-convertibility of entangled states and extension of Schmidt rank in infinite-dimensional systems. Quantum Inf. Comput. 8, 30–52 (2008)

    MathSciNet  CAS  Google Scholar 

  50. A. Serafini, Quantum Continuous Variables (CRC Press, Cambridge, 2017)

    Book  Google Scholar 

  51. J. Williamson, On the algebraic problem concerning the normal forms of linear dynamical systems. Am. J. Math. 58, 141 (1936)

    Article  MathSciNet  Google Scholar 

  52. S. Guha, J.H. Shapiro, B.I. Erkmen, Classical capacity of bosonic broadcast communication and a minimum output entropy conjecture. Phys. Rev. A 76, 032303 (2007)

    Article  ADS  Google Scholar 

  53. D.C. Batesky, M.J. Goldfogel, D.J. Weix, Removal of triphenylphosphine oxide by precipitation with zinc chloride in polar solvents. J. Org. Chem. 82, 9931–9936 (2017)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. M. Niknam, L.F. Santos, D.G. Cory, Sensitivity of quantum information to environment perturbations measured with a nonlocal out-of-time-order correlation function. Phys. Rev. Res. 2, 013200 (2020)

    Article  CAS  Google Scholar 

  55. M. Niknam, L.F. Santos, D.G. Cory, Experimental detection of the correlation Rényi entropy in the central Spin model. arXiv:2011.13948 (2020)

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 62172341), Sichuan Natural Science Foundation (No. 2023JQ00447), and Interdisciplinary Research of Southwest Jiaotong University China (No. 2682022KJ004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Xing Luo.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 158 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, MX., Wang, X. Unified catalytic entropy principles of general states. Eur. Phys. J. Plus 139, 160 (2024). https://doi.org/10.1140/epjp/s13360-024-04972-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-04972-z

Navigation