Skip to main content
Log in

Modulation instability spectrum and rogue waves of the repulsive lattices

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this work, the modulation instability and solitonic rogue waves are addressed in the repulsive lattice formed by identical particles with nearest neighbor couplings. We use the multiple scale method to derive the extended nonlinear Schrödinger equation with fourth-order dispersion and cubic–quintic nonlinearity. To calculate the modulation instability growth rate, a linear stability analysis is used. Thereafter, we have demonstrated that both fourth-order dispersion and quintic nonlinearity can change the amplitude of the plane wave and bandwidth of the modulation instability in normal and anomalous dispersion regimes. The dynamics of the solitonic rogue waves have been pointed out to show an increasing amplitude with the variation of the free amplitude parameter of the chain of magnets. Via the numerical simulation, the modulated wave patterns have been exhibited to manifest the development of the modulation instability spectrum in the lattice, and the long-time evolution of the continuous waves has brought new features to show an increasing amplitude of the trains of pulses under the variation of the interaction interatomic parameters. These parameters are revealed to be a suitable tool to manipulate nonlinear objects in nonlinear media where higher-order dispersion competes with nonlinearity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Availability of data and materials

Not applicable.

References

  1. C.A. Li, S.B. Zhang, J. Li, B. Trauzettel, Higher-order Fabry-Pérot interferometer from topological hinge states. Phys. Rev. Lett. 127, 026803 (2021)

    Article  CAS  PubMed  ADS  Google Scholar 

  2. J. Li, S. Chockalingam, T. Cohen, Observation of ultraslow shock waves in a tunable magnetic lattice. Phys. Rev. Lett. 127(1), 014302 (2021)

    Article  CAS  PubMed  ADS  Google Scholar 

  3. M. Molerón, C. Chong, A.J. Martínez, M.A. Porter, P.G. Kevrekidis, C. Daraio, Nonlinear excitations in magnetic lattices with long-range interactions. J. Phys. 21, 063032 (2019)

    MathSciNet  Google Scholar 

  4. A. Mehrem, N. Jiménez, L.J. Salmerón-Contreras, X. García-Andrés, L.M. García-Raffi, R. Picó, V.J. Sánchez-Morcillo, Nonlinear dispersive waves in repulsive lattices. Phys. Rev. E 96, 012208 (2017)

    Article  MathSciNet  CAS  PubMed  ADS  Google Scholar 

  5. J.B. Sonkeng, F.I. Ndzana, S. Abdoulkary, A. Mohamadou, Modulational instabilities and chaotic-like behaviors in repulsive lattices. Eur. Phys. J. Plus 136(2), 1–11 (2021)

    Article  Google Scholar 

  6. L. Akinyemi, A. Houwe, S. Abbagari, A.M. Wazwaz, H.M. Alshehri, M.S. Osman, Effects of the higher-order dispersion on solitary waves and modulation instability in a monomode fiber. Optik 288, 171202 (2023)

    Article  ADS  Google Scholar 

  7. A. Tsurui, Wave modulations in anharmonic lattices. Progr. Theoret. Phys. 48(4), 1196–1203 (1972)

    Article  CAS  ADS  Google Scholar 

  8. M.Z. Huang, W.Y. Ching, Calculation of optical excitations in cubic semiconductors. I. Electronic structure and linear response. Phys. Rev. B 47, 9449 (1993)

    Article  CAS  ADS  Google Scholar 

  9. C.B. Tabi, H. Tagwo, T.C. Kofané, Modulational instability in nonlinear saturable media with competing nonlocal nonlinearity. Phys. Rev. E 106, 054201 (2022)

    Article  MathSciNet  CAS  PubMed  ADS  Google Scholar 

  10. Y.S. Kivshar, M. Peyrard, Modulational instabilities in discrete lattices. Phys. Rev. A 46, 3198 (1992)

    Article  CAS  PubMed  ADS  Google Scholar 

  11. F.K. Abdullaev, A. Bouketir, A. Messikh, B.A. Umarov, Modulational instability and discrete breathers in the discrete cubic-quintic nonlinear Schrödinger equation. Phys. D Nonlinear Phenom. 232, 54–61 (2007)

    Article  ADS  Google Scholar 

  12. F.G. Mounouna, E. Wamba, A.S.T. Nguetcho, I.A. Bhat, J.M. Bilbault, Modulational stability brought by cubic-quartic interactions of the nearest-neighbor in FK model subjected in a parametrized on-site potential. Commun. Nonlinear Sci. Numer. Simulat. 105, 106088 (2022)

    Article  MathSciNet  Google Scholar 

  13. A.S.T. Nguetcho, E. Wamba, Effects of nonlinearity and substrate’s deformability on modulation instability in NKG equation. Communicat. Nonlinear Sci. Numer. Simulat. 50, 271–283 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  14. A. Houwe, S. Abbagari, Y. Saliou, L. Akinyemi, S.Y. Doka, Nonlinear generation modes in easy-axis anisotropy ferromagnetic spin chains with nearest-neighbor coupling. Eur. Phys. J. Plus 138, 133 (2023)

    Article  Google Scholar 

  15. A. Houwe, S. Abbagari, L. Akinyemi, M. Inc, S.Y. Doka, Wave propagation in discrete cold bosonic atoms zig-zag optical lattice. Eur. Phys. J. Plus 137(9), 1–11 (2022)

    Article  Google Scholar 

  16. T. Tanemura, Y. Ozeki, K. Kikuchi, Modulational instability and parametric amplification induced by loss dispersion in optical fibers. Phys. Rev. Lett. 93, 163902 (2004)

    Article  PubMed  ADS  Google Scholar 

  17. S.G. Murdoch, R. Leonhardt, J.D. Harvey, Polarization modulation instability in weakly birefringent fibers. Opt. Lett. 20, 866 (1995)

    Article  CAS  PubMed  ADS  Google Scholar 

  18. S. Abbagari, A. Houwe, L. Akinyemi, S.Y. Doka, Modulation instability and modulated wave patterns in a nonlinear electrical transmission line with the next-nearest-neighbor coupling. Chin. J. Phys. 85, 722–732 (2023)

    Article  MathSciNet  Google Scholar 

  19. S. Abbagari, A. Houwe, L. Akinyemi, Y. Saliou, T.B. Bouetou, Modulation instability gain and discrete soliton interaction in gyrotropic molecular chain. Chaos Solitons Fractals 160, 112255 (2022)

    Article  MathSciNet  Google Scholar 

  20. S. Wen, Y. Xiang, W. Su, Y. Hu, X. Fu, D. Fan, Role of the anomalous self-steepening effect in modulation instability in negative-index material. Opt. Express 14(4), 1568–1575 (2006)

    Article  PubMed  ADS  Google Scholar 

  21. M. Molerón, A. Leonard, C. Daraio, Solitary waves in a chain of repelling magnets. J. Appl. Phys. 115, 184901 (2014)

    Article  ADS  Google Scholar 

  22. V. Nosenko, K. Avinash, J. Goree, B. Liu, Nonlinear interaction of compressional waves in a 2D dusty plasma crystal. Phys. Rev. Lett. 92, 085001 (2004)

    Article  CAS  PubMed  ADS  Google Scholar 

  23. X. Wang, B. Yang, Y. Chen, Y. Yang, Higher-order rogue wave solutions of the Kundu-Eckhaus equation. Phys. Scr. 89, 095210–15 (2014)

    Article  ADS  Google Scholar 

  24. F. I.I. Ndzana, G. Djelah, A. Mohamadou, Solitonic rogue waves dynamics in a nonlinear electrical transmission line with the next nearest neighbor couplings. Chin. J. Phys. 77, 1927–1945 (2022)

    Article  MathSciNet  Google Scholar 

  25. E. Kengne, Nonlinear wave transmission in a two-dimensional nonlinear electric transmission network with dissipative elements. Chaos Solitons Fractals 164, 112637 (2022)

    Article  MathSciNet  Google Scholar 

  26. A. Houwe, S. Abbagari, L. Akinyemi, S.Y. Doka, K.T. Crépin, Modulation instability gain and localized waves in the modified Frenkel-Kontorova model with high-order nonlinearities. Chaos Solitons Fractals 173, 113744 (2023)

    Article  MathSciNet  Google Scholar 

  27. N. Akhmediev, A. Ankiewicz, M. Taki, Waves that appear from nowhere and disappear without a trace. Phys. Lett. A 373, 675–678 (2009)

    Article  CAS  ADS  Google Scholar 

  28. K. Dysthe, H.E. Krogstad, P. Müller, Oceanic rogue waves. Annu. Rev. Fluid Mech. 40, 287–310 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  29. D.R. Solli, C. Ropers, P. Koonath, B. Jalali, Optical rogue waves. Nature 450(7172), 1054–1057 (2007)

    Article  CAS  PubMed  ADS  Google Scholar 

  30. Y.S. Kivshar, G. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic Press, Cambridge, 2003)

    Google Scholar 

  31. A.R. Osborne, Nonlinear Ocean Waves (Academic Press, Cambridge, 2009)

    Google Scholar 

  32. C.J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases (Cambridge University Press, Cambridge, 2002)

    Google Scholar 

  33. F.G. Mounouna, E. Wamba, A.S.T. Nguetcho, I.A. Bhat, J.M. Bilbault, Modulational stability brought by cubic-quartic interactions of the nearest-neighbor in FK model subjected in a parametrized on-site potential. Commun. Nonlinear Sci. Numer. Simulat. 105, 106088 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Funding

No funding available for this project.

Author information

Authors and Affiliations

Authors

Contributions

The authors read and approved the final manuscript.

Corresponding authors

Correspondence to Alphonse Houwe, Souleymanou Abbagari or Lanre Akinyemi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

It is essential to understand how Eq. (8) is generated. As a result, to derive Eq. (8), we use the method described in [7, 8, 12, 13]. We express the following equations using Taylor expansion in order 2 for the function \(\psi (x,\tau )\) as follows:

$$ \begin{aligned} \Psi _n(t)&=\psi (x,\tau )e^{i\theta _n}+\psi ^*(x,\tau )e^{-i\theta _n},\\ \Psi _{n+1}(t)&=\Bigg (\psi +\frac{\partial \psi }{\partial x}+\frac{1}{2}\frac{\partial ^2\psi }{\partial x^2}+\frac{1}{6}\frac{\partial ^3\psi }{\partial x^3}+\frac{1}{24}\frac{\partial ^4\psi }{\partial x^4} \Bigg )e^{i\theta _n}e^{ik}\\&+\Bigg (\psi ^*+\frac{\partial \psi ^*}{\partial x}+\frac{1}{2}\frac{\partial ^2\psi ^*}{\partial x^2}+\frac{1}{6}\frac{\partial ^3\psi ^*}{\partial x^3}+\frac{1}{24}\frac{\partial ^4\psi ^*}{\partial x^4} \Bigg )e^{-i\theta _n}e^{-ik},\\ \Psi _{n-1}(t)&=\Bigg (\psi -\frac{\partial \psi }{\partial x}+\frac{1}{2}\frac{\partial ^2\psi }{\partial x^2}-\frac{1}{6}\frac{\partial ^3\psi }{\partial x^3}+\frac{1}{24}\frac{\partial ^4\psi }{\partial x^4} \Bigg )e^{i\theta _n}e^{-ik}\\&+\Bigg (\psi ^*-\frac{\partial \psi ^*}{\partial x}+\frac{1}{2}\frac{\partial ^2\psi ^*}{\partial x^2}-\frac{1}{6}\frac{\partial ^3\psi ^*}{\partial x^3}+\frac{1}{24}\frac{\partial ^4\psi ^*}{\partial x^4} \Bigg )e^{-i\theta _n}e^{ik}. \end{aligned}$$
(27)

By substituting Eq. (27) into Eq. (4), and collecting terms of order \(e^{i\theta _n},\) we obtain the following equation:

$$ \begin{aligned}&\epsilon ^{4}\frac{\partial ^{2}\psi }{\partial {\tau }^{2}}-2\epsilon ^{3}v_{g}\frac{\partial ^{2}\psi }{\partial x\partial \tau }+\epsilon ^{2}\left( -2i\omega \frac{\partial \psi }{\partial \tau }+v_{g}^{2}\frac{\partial ^{2}\psi }{\partial {x}^{2}}\right) +2i\omega \epsilon {v_{g}}\frac{\partial \psi }{\partial x}-2\psi -\frac{1}{4}\frac{\partial ^{2}\psi }{\partial {x}^{2}}\\&\quad -\frac{1}{48}{\frac{\partial ^{4}\psi }{\partial {x}^{4}}}+48s_3(\psi )^{2}\psi ^*+3s_3\left( \frac{\partial \psi }{\partial x}\right) ^{2}{\frac{\partial ^{2}\psi ^*}{\partial {x}^{2}}}+6s_3\frac{\partial \psi }{\partial {x}}\frac{\partial ^{2}\psi }{\partial {x}^{2}}{\frac{\partial \psi ^*}{\partial x}}+640s_5(\psi )^{3}(\psi ^*)^{2}=0. \end{aligned}$$
(28)

In the upper frequencies, i.e., \(k=\pi \) and \(\omega =\sqrt{1+\Omega _{0}^2},\) considering the order terms only \(\epsilon ^{0}\) and \(\epsilon ^{2},\) we obtain

$$\begin{aligned} &i\frac{\partial \psi }{\partial \tau }+{\frac{1}{\epsilon ^{2}\sqrt{\Omega _{0}^{2}+1}}}\psi +\frac{1}{8\epsilon ^{2}\sqrt{\Omega _{0}^{2}+1}}\frac{\partial ^{2}\psi }{\partial {x}^{2}}+\frac{1}{96\epsilon ^{2}\sqrt{\Omega _{0}^{2}+1}}\frac{\partial ^{4}\psi }{\partial {x}^{4}}+\frac{\left( C+u_{{0}}\right) C}{u_{0}^{2}\epsilon ^{2}\sqrt{\Omega _{0}^{2}+1}}|\psi |^{2}\psi \\&\quad +\frac{2(C+3u_{0})(C+2u_{0})(C+u_{0})C}{3u_{0}^{4}\epsilon ^{2}\sqrt{\Omega _{0}^{2}+1}}|\psi |^{4}\psi +\frac{C(C+u_{0})}{16u_{0}^{2}\epsilon ^{2}\sqrt{\Omega _{0}^{2}+1}}\frac{\partial \psi }{\partial x}\left( \frac{\partial \psi }{\partial x}\frac{\partial ^{2}\psi ^*}{\partial {x}^{2}}+2\frac{\partial ^{2}\psi }{\partial {x} ^{2}}\frac{\partial \psi ^*}{\partial x}\right) =0. \end{aligned}$$
(29)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Houwe, A., Abbagari, S., Akinyemi, L. et al. Modulation instability spectrum and rogue waves of the repulsive lattices. Eur. Phys. J. Plus 139, 177 (2024). https://doi.org/10.1140/epjp/s13360-024-04961-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-04961-2

Navigation