Skip to main content
Log in

Simulation of the electron acceleration in the waveguide with Piet-Hein cross section

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This article investigates the acceleration of an injected electron inside a waveguide with a Piet-Hein cross section and a perfect electric conductor wall containing cold non-magnetized plasma. At first, by applying the boundary conditions, the electromagnetic field components are calculated numerically for TE modes. Then the dispersion curves will be drawn, and the cutoff frequency of different modes will be analyzed. In the following, by injecting an electron into the waveguide and considering its interaction with the electromagnetic field, the relativistic equations of energy and momentum will be solved, and the acceleration of the electron will be calculated. Acceleration gradient, deflection angle, and electron trajectory will be discussed. Also, the effect of plasma density on particle acceleration is investigated and compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

No data associated in the manuscript.

References

  1. D.A. Pinnow, T.C. Rich, F.W. Ostermayer Jr., M. DiDomenico Jr., Fundamental optical attenuation limits in the liquid and glassy state with application to fiber optical waveguide materials. Appl. Phys. Lett. 22(10), 527–529 (1973)

    Article  CAS  ADS  Google Scholar 

  2. R.A. Nadkarni, Applications of microwave oven sample dissolution in analysis. Anal. Chem. 56(12), 2233–2237 (1984)

    Article  CAS  Google Scholar 

  3. M.S. Pinho, M.L. Gregori, R.C.R. Nunes, B.G. Soares, Performance of radar absorbing materials by waveguide measurements for X- and Ku-band frequencies. Eur. Polymer J. 38(11), 2321–2327 (2002)

    Article  CAS  Google Scholar 

  4. L.J. Wong, A. Fallahi, F.X. Kärtner, Compact electron acceleration and bunch compression in THz waveguides. Opt. Express 21(8), 9792–9806 (2013)

    Article  PubMed  ADS  Google Scholar 

  5. E. Snitzer, Cylindrical dielectric waveguide modes. JOSA 51(5), 491–498 (1961)

    Article  MathSciNet  ADS  Google Scholar 

  6. A. Kumar, K. Thyagarajan, A.K. Ghatak, Analysis of rectangular-core dielectric waveguides: an accurate perturbation approach. Opt. Lett. 8(1), 63–65 (1983)

    Article  CAS  PubMed  ADS  Google Scholar 

  7. C. Yeh, Elliptical dielectric waveguides. J. Appl. Phys. 33(11), 3235–3243 (1962)

    Article  ADS  Google Scholar 

  8. C. Yeh, Modes in weakly guiding elliptical optical fibres. Opt. Quantum Electron. 8, 43–47 (1976)

    Article  Google Scholar 

  9. R.B. Dyott, C.R. Day, M.C. Brain, Glass-fibre waveguide with a triangular core. Electron. Lett. 13(9), 288–290 (1973)

    Article  ADS  Google Scholar 

  10. V. Misra, P.K. Choudhury, P. Khastgir, S.P. Ojha, Electromagnetic wave propagation through a dielectric guide having Piet Hein cross-sectional geometry. Microw. Opt. Technol. Lett. 12(5), 250–254 (1996)

    Article  Google Scholar 

  11. P.K. Choudhury, Power characteristics of dielectric optical Piet Hein waveguides. Microw. Opt. Technol. Lett. 35(3), 236–240 (2002)

    Article  Google Scholar 

  12. V. Singh, B. Prasad, S.P. Ojha, Theoretical analysis and dispersion curves of an annular light guide with a cross-section bounded by two Piet-Hein curves. J. Electromagn. Waves Appl. 17(7), 1025–1036 (2003)

    Article  ADS  Google Scholar 

  13. V. Singh, B. Prasad, S.P. Ojha, A comparative study of the modal characteristics and waveguide dispersion of optical waveguides with three different closed loop cross-sectional boundaries. Optik 115(6), 281–288 (2004)

    Article  ADS  Google Scholar 

  14. Y. Prajapati, V. Singh, J.P. Saini, Modal analysis of a super-elliptical Bragg waveguide with a small number of periodic cladding layers based on a very simple analytical technology. Optik 120(1), 14–19 (2009)

    Article  ADS  Google Scholar 

  15. S.K. Jawla, S. Kumar, H.K. Malik, Evaluation of mode fields in a magnetized plasma waveguide and electron acceleration. Opt. Commun. 251(4–6), 346–360 (2005)

    Article  CAS  ADS  Google Scholar 

  16. H.K. Malik, S. Kumar, K.P. Singh, Electron acceleration in a rectangular waveguide filled with unmagnetized inhomogeneous cold plasma. Laser Part. Beams 26(2), 197–205 (2008)

    Article  CAS  ADS  Google Scholar 

  17. A.G. York, H.M. Milchberg, J.P. Palastro, T.M. Antonsen, Direct acceleration of electrons in a corrugated plasma waveguide. Phys. Rev. Lett. 100(19), 195001 (2008)

    Article  CAS  PubMed  ADS  Google Scholar 

  18. C. Nantista, S. Tantawi, V. Dolgashev, Low-field accelerator structure couplers and design techniques. Phys. Rev. Spec. Top. Accel. Beams 7(7), 072001 (2004)

    Article  ADS  Google Scholar 

  19. A.K. Aria, H.K. Malik, Numerical studies on wakefield excited by Gaussian-like microwave pulse in a plasma filled waveguide. Opt. Commun. 282(3), 423–426 (2009)

    Article  CAS  ADS  Google Scholar 

  20. H.K. Malik, Analytical calculations of wake field generated by microwave pulses in a plasma filled waveguide for electron acceleration. J. Appl. Phys. 104(5), 053308 (2008)

    Article  ADS  Google Scholar 

  21. H.K. Malik, S. Kumar, Y. Nishida, Electron acceleration by laser produced wake field: pulse shape effect. Opt. Commun. 280(2), 417–423 (2007)

    Article  CAS  ADS  Google Scholar 

  22. H.K. Malik, A.K. Aria, Microwave and plasma interaction in a rectangular waveguide: effect of ponderomotive force. J. Appl. Phys. 108(1), 013109 (2010)

    Article  ADS  Google Scholar 

  23. H.K. Malik, Density bunch formation by microwave in a plasma-filled cylindrical waveguide. Europhys. Lett. 106(5), 55002 (2014)

    Article  ADS  Google Scholar 

  24. M.B. Abrahimi, A. Abdoli-Arani, Investigation of TE and TM modes fields and injected electron dynamic in the plasma waveguide with Piet Hein cross section. Phys. Scr. 97(3), 035505 (2022)

    Article  ADS  Google Scholar 

  25. M.B. Abrahimi, A. Abdoli-Arani, Fields and injected electron dynamic in the coaxial waveguide with Piet Hein cross section filled plasma considering TE and TM modes. Eur. Phys. J. Plus 137(1), 167 (2022)

    Article  Google Scholar 

  26. L. Malik, In-flight plume control and thrust tuning in magnetic nozzle using tapered-coils system under the effect of density gradient. IEEE Trans. Plasma Sci. 51, 1325 (2023)

    Article  ADS  Google Scholar 

  27. L. Malik, Tapered coils system for space propulsion with enhanced thrust: a concept of plasma detachment. Propuls. Power Res. 11(2), 171–180 (2022)

    Article  ADS  Google Scholar 

  28. L. Malik, Novel concept of tailorable magnetic field and electron pressure distribution in a magnetic nozzle for effective space propulsion. Propuls. Power Res. 12(1), 59–68 (2023)

    Article  Google Scholar 

  29. L. Malik, A. Escarguel, M. Kumar, A. Tevatia, R.S. Sirohi, Uncovering the remarkable contribution of lasers peak intensity region in holography. Laser Phys. Lett. 18(8), 086003 (2021)

    Article  ADS  Google Scholar 

  30. R.B. Lehoucq, D.C. Sorensen, C. Yang, ARPACK Users’ Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods (Society for Industrial and Applied Mathematics, Philadelphia, 1998)

    Book  Google Scholar 

  31. H.K. Malik, Energy gain by an electron in the fundamental mode of a rectangular waveguide by microwave radiation. J. Plasma Phys. 69(1), 59–67 (2003)

    CAS  ADS  Google Scholar 

  32. H.K. Malik, Effect of plasma density on proton acceleration in a rectangular waveguide. Plasma Sci. Technol. 6(5), 2456 (2004)

    Article  CAS  Google Scholar 

  33. H.K. Malik, Application of obliquely interfering TE10 modes for electron energy gain. Opt. Commun. 278(2), 387–394 (2007)

    Article  CAS  ADS  Google Scholar 

  34. S. Kumar, H.K. Malik, Electron acceleration in a plasma filled rectangular waveguide under obliquely applied magnetic field. J. Plasma Phys. 72(6), 983–987 (2006)

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Abdoli Arani.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abrahimi, M.B., Abdoli Arani, A. Simulation of the electron acceleration in the waveguide with Piet-Hein cross section. Eur. Phys. J. Plus 139, 164 (2024). https://doi.org/10.1140/epjp/s13360-024-04957-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-04957-y

Navigation