Skip to main content
Log in

Fields and injected electron dynamic in the coaxial waveguide with Piet Hein cross section filled plasma considering TE and TM modes

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, we consider a metallic coaxial waveguide with Piet Hein cross section filled by cold unmagnetized homogenous plasma. First by introducing a Piet Hein waveguide and considering a suitable approximation, wave equation as two differential equations is presented. Then, electromagnetic fields associated with a transverse magnetic wave (TM) and a transverse electric wave (TE) propagating inside the Piet Hein coaxial waveguide-filled plasma are obtained and plotted. Using the boundary conditions in the Piet Hein coaxial waveguide containing cold plasma, the dispersion relations for TM and TE modes are derived and plotted. The energy and dynamic of an injected external electron with initial energy using radiation of an electromagnetic source in the Piet Hein, plasma coaxial waveguides for TM and TE modes are investigated. The obtained differential equations related to electron motion and energy are numerically solved by the fourth-order Runge–Kutta method. Numerical computations are made and the motion path and kinetic energy of electron injected into the purposed Piet Hein plasma coaxial waveguides for two considered modes are graphically presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability Statement

The author confirms that the data supporting the findings of this study are available within the article and its supplementary materials.

References

  1. E. Snitzer, J. Opt. Soc. Amer. 51(1961), 491–498 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  2. A. Kumar, V. Thyagaranjan, A.K. Ghatak, Opt. Lett. 8, 63–65 (1983)

    Article  ADS  Google Scholar 

  3. C. Yeh, J. Appl. Phys. 33, 3235–3242 (1962)

    Article  ADS  Google Scholar 

  4. C. Yeh, Opt. Quantum Electron 8, 43–47 (1976)

    Article  Google Scholar 

  5. R.B. Dyott, Electron Lett. 9, 288–290 (1973)

    Article  ADS  Google Scholar 

  6. J.R. James, I.N.L. Gallett, Proc. IEEE 120, 1362–1370 (1973)

    Google Scholar 

  7. M.P.S. Rao, B. Prasad, P. Khastgir, S.P. Ojha, Microw. Opt. Technol. Lett. 14, 177–180 (1997)

    Article  Google Scholar 

  8. M.P.S. Rao, V. Singh, B. Prasad, P. Khastgir, S.P. Ojha, Photon. Optoelectron 5, 73–78 (1998)

    Google Scholar 

  9. V.N. Mishra, V. Singh, B. Prasad, S.P. Ojha, Microw. Opt. Technol. Lett. 23, 221–224 (1999)

    Article  Google Scholar 

  10. V. Singh, B. Prasad, S.P. Ojha, Microw. Opt. Technol. Lett. 31, 211–214 (2001)

    Article  Google Scholar 

  11. V. Singh, B. Prasad, S.P. Ojha, Opt. Fiber Technol. 6, 290–298 (2000)

    Article  ADS  Google Scholar 

  12. V. Singh, M. Joshi, B. Prasad, S.P. Ojha, J. Electromagn. Waves Appl. 18, 455–468 (2004)

    Article  Google Scholar 

  13. V. Singh, B. Prasad, S.P. Ojha, J. Electromagn. Waves Appl. 17, 1025–1036 (2003)

    Article  Google Scholar 

  14. V. Singh, S.N. Maurya, B. Prasad, S.P. Ojha, Progr. Electromag. Res. PIER 59, 231–249 (2006)

    Article  Google Scholar 

  15. B.F. Mohamed, A.M. Gouda, Pasma Sci. Technol. 13, 357–361 (2011)

    Article  ADS  Google Scholar 

  16. B.F. Mohamed, A.M. Gouda, L.Z. Ismail, IEEE Trans. Plasma Sci. 39, 842–846 (2011)

    Article  ADS  Google Scholar 

  17. S. Kumar, M. Yoon, J. Appl. Phys. 103, 1–7 (2008)

    Google Scholar 

  18. S. Kumar, M. Yoon, J. Appl. Phys. 104, 1–6 (2008)

    Google Scholar 

  19. H.K. Malik, S. Kumar, K.P. Singh, Laser Part. Beams 26, 197–205 (2008)

    Article  ADS  Google Scholar 

  20. S.K. Jawla, S. Kumar, H.K. Malik, Opt. Commun. 251, 346–360 (2005)

    Article  ADS  Google Scholar 

  21. D.N. Gupta, N. Kant, D.E. Kim, H. Suk, Phys. Lett. A 368, 402–407 (2007)

    Article  ADS  Google Scholar 

  22. M. Litos et al., Nature 515, 92–95 (2014)

    Article  ADS  Google Scholar 

  23. L. Xiao, W. Gai, X. Sun, Phys. Rev. E 65, 1–9 (2002)

    Google Scholar 

  24. A. Abdoli-Arani, M.J. Basiry, Physica Scripta 91, 095602 (2016)

    Article  ADS  Google Scholar 

  25. A. Abdoli-Arani, M. Moghaddasi, Waves Random Complex Media 26, 339–347 (2016)

    Article  ADS  Google Scholar 

  26. A. Abdoli-Arani, Waves Random Complex Media 26, 407–416 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  27. A. Abdoli-Arani, N. Ghanbari, Waves Random Complex Media 31, 165–181 (2019)

    Article  ADS  Google Scholar 

  28. A. Abdoli-Arani, Waves Random Complex Media 25, 350–360 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  29. A. Abdoli-Arani, Waves Random Complex Media 25, 243–258 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  30. A. Abdoli-Arani, M. Kadkhodaei, Z. Rahmani, Indian J. Phys. 94, 1279–1292 (2019)

    Article  ADS  Google Scholar 

  31. H.P. Freund, P.H. Jackson, D.E. Pershing, J.M. Taccetti, Phys. Plasmas 1, 1046 (1994)

    Article  ADS  Google Scholar 

  32. H.P. Freund, M.E. Read, R.H. Jackson, D.E. Pershing, J.M. Taccetti, Phys. Plasmas 2, 1755 (1995)

    Article  ADS  Google Scholar 

  33. D.B. McDermott, A.J. Balkcum, R.M. Phillips, J.A.C. Luhmann, Phys. Plasmas 2, 4332 (1995)

    Article  ADS  Google Scholar 

  34. B. Maraghechi, B. Farrokhi, J.E. Willett, Phys. Plasmas 6, 3778 (1999)

    Article  ADS  Google Scholar 

  35. R.N. Franklin, M.L.G. Oldfields, Int. J. Electron. 27, 431–442 (1969)

    Article  Google Scholar 

  36. A. Abdoli-Arani, Waves Random Complex Media 25, 350–360 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  37. U.H. Hwang, J.E. Willett, H. Mehdian, Phys. Plasmas 5, 273 (1998)

    Article  ADS  Google Scholar 

  38. J.D. Jackson, Classical electrodynamics, 3rd edn. (Wiley, London, 1998), p. 295

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Abdoli-Arani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abrahimi, M.B., Abdoli-Arani, A. Fields and injected electron dynamic in the coaxial waveguide with Piet Hein cross section filled plasma considering TE and TM modes. Eur. Phys. J. Plus 137, 167 (2022). https://doi.org/10.1140/epjp/s13360-021-02307-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02307-w

Navigation