Skip to main content
Log in

Superposition behavior of the lump solutions and multiple mixed function solutions for the (3+1)-dimensional Sharma–Tasso–Olver-like equation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, several analytical solutions of the (3+1)-dimensional Sharma–Tasso–Olver-like (STOL) equation describing the dynamical propagation of nonlinear dispersive waves in inhomogeneous media are obtained by means of the homoclinic test method. In order to study the interaction between the lump, breather and kink waves, we first construct the hybrid solutions between lump solutions and different functions of the (3+1)-dimensional STOL equation starting from the hybrid test functions, and then, the existence theorem and remarks about the superposition behavior of multiple quadratic functions, hyperbolic functions and trigonometric functions of the (3+1)-dimensional STOL equation are proved. With the help of the symbolic computing system Mathematica, the parameter relationship between the solutions is found, and the mixed solutions containing different functions are constructed. Besides, the superposition behaviors of multiple hyperbolic functions, trigonometric functions and function product forms are also studied. By selecting appropriate parameter values, the dynamical behaviors of these analytical solutions are illustrated and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

All data generated or analyzed during this study are included in this published article. The manuscript has associated data in a data repository.

References

  1. N.A. Kudryashov, Stationary solitons of the generalized nonlinear Schrödinger equation with nonlinear dispersion and arbitrary refractive index. Appl. Math. Lett. 128, 107888 (2022)

    Article  MathSciNet  Google Scholar 

  2. M. Kumar, R.K. Gupta, Coupled Higgs equation: novel solution via GSSE method, bifurcation and chaotic patterns and series solution via symmetry. Qual. Theor. Dyn. Syst. 23(1), 31 (2024)

    Article  MathSciNet  Google Scholar 

  3. R.V. Muratov, N.A. Kudryashov, P.N. Ryabov, A finite volume method for numerical simulations of adiabatic shear bands formation. Commun. Nonlinear Sci. Numer. Simul. 101, 105858 (2021)

    Article  MathSciNet  Google Scholar 

  4. K. Hosseini, W.X. Ma, R. Ansari, M. Mirzazadeh, R. Pouyanmehr, F. Samadani, Evolutionary behavior of rational wave solutions to the (4+1)-dimensional Boiti-Leon-Manna-Pempinelli equation. Phys. Scr. 95, 065208 (2020)

    Article  CAS  ADS  Google Scholar 

  5. N.A. Kudryashov, A. Biswas, A.H. Kara, Y. Yıldırım, Cubic-quartic optical solitons and conservation laws having cubic-quintic-septic-nonic self-phase modulation. Optik 269, 169834 (2022)

    Article  ADS  Google Scholar 

  6. B. Madhukalya, R. Das, K. Hosseini, D. Baleanu, S. Salahshour, Small amplitude ion-acoustic solitary waves in a magnetized ion-beam plasma under the effect of ion and beam temperatures. Eur. Phys. J. Plus 138, 315 (2023)

    Article  Google Scholar 

  7. K. Hosseini, E. Hincal, M. Mirzazadeh, S. Salahshour, O.A. Obi, F. Rabiei, A nonlinear Schrödinger equation including the parabolic law and its dark solitons. Optik 273, 170363 (2023)

    Article  ADS  Google Scholar 

  8. A. Biswas, M. Ekici, A. Sonmezoglu, Stationary optical solitons with Kudryashov’s quintuple power-law of refractive index having nonlinear chromatic dispersion. Phys. Lett. A 426, 127885 (2022)

    Article  MathSciNet  CAS  Google Scholar 

  9. S. Lavrova, N.A. Kudryashov, Suppression of chaos in the periodically perturbed generalized complex Ginzburg-Landau equation by means of parametric excitation. Opt. Quant. Electron. 55(10), 903 (2023)

    Article  Google Scholar 

  10. K. Hosseini, M. Mirzazadeh, D. Baleanu, S. Salahshour, L. Akinyemi, Optical solitons of a high-order nonlinear Schrödinger equation involving nonlinear dispersions and Kerr effect. Opt. Quant. Electron. 54(3), 177 (2022)

    Article  Google Scholar 

  11. M. Soltani, H. Triki, F. Azzouzi, Y.Z. Sun, A. Biswas, Y. Yıldırım, H.M. Alshehri, Q. Zhou, Pure-quartic optical solitons and modulational instability analysis with cubic-quintic nonlinearity. Chaos Solitons Fract. 169, 113212 (2023)

    Article  MathSciNet  Google Scholar 

  12. K. Hosseini, S. Salahshour, D. Baleanu, M. Mirzazadeh, K. Dehingia, A new generalized KdV equation: its lump-type, complexiton and soliton solutions. Int. J. Mod. Phys. B 36(31), 2250229 (2022)

    Article  ADS  Google Scholar 

  13. L. Akinyemi, M. Mirzazadeh, K. Hosseini, Solitons and other solutions of perturbed nonlinear Biswas-Milovic equation with Kudryashov’s law of refractive index. Nonlinear Anal-Model. 27(3), 479–495 (2022)

    MathSciNet  Google Scholar 

  14. N.A. Kudryashov, Q. Zhou, C.Q. Dai, Solitary waves of the complex Ginzburg-Landau equation with anti-cubic nonlinearity. Phys. Lett. A 490, 129172 (2023)

    Article  MathSciNet  CAS  Google Scholar 

  15. A. Ghose-Choudhury, P. Guha, Isochronicity conditions and Lagrangian formulations of the Hirota type oscillator equations. Qual. Theor. Dyn. Syst. 21, 144 (2022)

    Article  MathSciNet  Google Scholar 

  16. K. Hosseini, S. Salahshour, M. Mirzazadeh, A. Ahmadian, D. Baleanu, A. Khoshrang, The (2+1)-dimensional Heisenberg ferromagnetic spin chain equation: its solitons and Jacobi elliptic function solutions. Eur. Phys. J. Plus 136, 206 (2021)

    Article  Google Scholar 

  17. S. Mitra, S. Poddar, A. Ghose-Choudhury, S. Garai, Solitary wave characteristics in nonlinear dispersive media: a conformable fractional derivative approach. Nonlinear Dyn. 110, 1777–1788 (2022)

    Article  Google Scholar 

  18. C.C. Ding, Q. Zhou, H. Triki, Y.Z. Sun, A. Biswas, Dynamics of dark and anti-dark solitons for the x-nonlocal Davey-Stewartson II equation. Nonlinear Dyn. 111, 2621–2629 (2023)

    Article  Google Scholar 

  19. M. Kumar, R.K. Gupta, A new generalized approach for soliton solutions and generalized symmetries of time-fractional partial differential equation. Int. J. Appl. Comput. Math. 8, 200 (2022)

    Article  MathSciNet  Google Scholar 

  20. K. Hosseini, A. Akbulut, D. Baleanu, S. Salahshour, The Sharma-Tasso-Olver-Burgers equation: its conservation laws and kink solitons. Commun. Theor. Phys. 74, 025001 (2022)

    Article  MathSciNet  ADS  Google Scholar 

  21. S. Kumar, A. Kumar, A.M. Wazwaz, New exact solitary wave solutions of the strain wave equation in microstructured solids via the generalized exponential rational function method. Eur. Phys. J. Plus. 135(11), 870 (2020)

    Article  Google Scholar 

  22. J.G. Liu, X.J. Yang, Y.Y. Feng, L.L. Geng, Characteristics of new type rogue waves and solitary waves to the extended (3+1)-dimensional Jimbo-Miwa equation. J. Appl. Anal. Comput. 11(6), 2722–2735 (2021)

    MathSciNet  Google Scholar 

  23. J.P. Wu, X.G. Geng, Inverse scattering transform of the coupled Sasa-Satsuma equation by Riemann–Hilbert approach. Commun. Theor. Phys. 67, 527–534 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  24. W.Q. Peng, Y. Chen, N-double poles solutions for nonlocal Hirota equation with nonzero boundary conditions using Riemann–Hilbert method and PINN algorithm. Physica D 435, 133274 (2022)

    Article  MathSciNet  Google Scholar 

  25. R. Hirota, The Direct Method in Soliton Theory (Cambridge University Press, New York, 2004)

    Book  Google Scholar 

  26. W.X. Ma, Lump solutions to the Kadomtsev–Petviashvili equation. Phys. Lett. A 379, 1975–1978 (2015)

    Article  MathSciNet  CAS  ADS  Google Scholar 

  27. A.M. Wazwaz, S.A. El-Tantawy, Solving the (3+1)-dimensional KP-Boussinesq and BKP-Boussinesq equations by the simplified Hirota’s method. Nonlinear Dyn. 88, 3017–3021 (2017)

    Article  MathSciNet  Google Scholar 

  28. K. Hosseini, M. Samavat, M. Mirzazadeh, W.X. Ma, Z. Hammouch, A new (3+1)-dimensional Hirota bilinear equation: its Bäcklund transformation and rational-type solutions. Regul. Chaotic Dyn. 25, 383–391 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  29. M. Kumar, R.K. Gupta, Group classification and exact solutions of fractional differential equation with quintic non-Kerr nonlinearity term. Opt. Quant. Electron. 55(6), 492 (2023)

    Article  Google Scholar 

  30. R.K. Gupta, V. Kumar, R. Jiwari, Exact and numerical solutions of coupled short pulse equation with time-dependent coefficients. Nonlinear Dyn. 79, 455–464 (2015)

    Article  MathSciNet  Google Scholar 

  31. J.G. Liu, X.J. Yang, L.L. Geng, X.J. Yu, On fractional symmetry group scheme to the higher dimensional space and time fractional dissipative Burgers equation. Int. J. Geo. Methods M. 19(11), 2250173 (2022)

    MathSciNet  Google Scholar 

  32. T.C. Xia, X.H. Chen, D.Y. Chen, Darboux transformation and soliton-like solutions of nonlinear Schrödinger equation. Chaos Solitons Fract. 26, 889–896 (2005)

    Article  ADS  Google Scholar 

  33. B.Q. Li, Y.L. Ma, N-order rogue waves and their novel colliding dynamics for a transient stimulated Raman scattering system arising from nonlinear optics. Nonlinear Dyn. 101, 2449–2461 (2020)

    Article  Google Scholar 

  34. Y.L. Ma, B.Q. Li, Kraenkel-Manna-Merle saturated ferromagnetic system: Darboux transformation and loop-like soliton excitations. Chaos Solitons Fract. 159, 112179 (2022)

    Article  MathSciNet  Google Scholar 

  35. X.Y. Gao, Bäcklund transformation and shock-wave-type solutions for a generalized (3+1)-dimensional variable-coefficient B-type Kadomtsev–Petviashvili equation in fluid mechanics. Ocean Eng. 96, 245–247 (2015)

    Article  Google Scholar 

  36. M.J. Ablowitz, J. Satsuma, Solitons and rational solutions of nonlinear evolution equations. J. Math. Phys. 19, 2180–2186 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  37. P.F. Han, Y. Zhang, C.H. Jin, Novel evolutionary behaviors of localized wave solutions and bilinear auto-Bäcklund transformations for the generalized (3+1)-dimensional Kadomtsev–Petviashvili equation. Nonlinear Dyn. 111, 8617–8636 (2023)

    Article  Google Scholar 

  38. K. Hosseini, E. Hincal, S. Salahshour, M. Mirzazadeh, K. Dehingia, B.J. Nath, On the dynamics of soliton waves in a generalized nonlinear Schrödinger equation. Optik 272, 170215 (2023)

    Article  CAS  ADS  Google Scholar 

  39. A. Ghose-Choudhury, S. Garai, Some exact wave solutions of nonlinear partial differential equations by means of comparison with certain standard ordinary differential equations. Math. Methods Appl. Sci. 45, 9297–9307 (2022)

    Article  MathSciNet  ADS  Google Scholar 

  40. K. Hosseini, E. Hincal, F. Mirekhtiary, K. Sadri, O.A. Obi, A. Denker, M. Mirzazadeh, A fourth-order nonlinear Schrödinger equation involving power law and weak nonlocality: its solitary waves and modulational instability analysis. Optik 284, 170927 (2023)

    Article  ADS  Google Scholar 

  41. H. Triki, Y.Z. Sun, Q. Zhou, A. Biswas, Y. Yıldırım, H.M. Alshehri, Dark solitary pulses and moving fronts in an optical medium with the higher-order dispersive and nonlinear effects. Chaos Solitons Fract. 164, 112622 (2022)

    Article  MathSciNet  Google Scholar 

  42. S. Sain, A. Ghose-Choudhury, S. Garai, Solitary wave solutions for the KdV-type equations in plasma: a new approach with the Kudryashov function. Eur. Phys. J. Plus 136, 226 (2021)

    Article  Google Scholar 

  43. J.G. Liu, X.J. Yang, Symmetry group analysis of several coupled fractional partial differential equations. Chaos Solitons Fract. 173, 113603 (2023)

    Article  MathSciNet  Google Scholar 

  44. V.V. Gudkov, A family of exact travelling wave solutions to nonlinear evolution and wave equations. J. Math. Phys. 38(9), 4794–4803 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  45. S. Wang, X.Y. Tang, S.Y. Lou, Soliton fission and fusion: Burgers equation and Sharma-Tasso-Olver equation. Chaos Solitons Fract. 21(1), 231–239 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  46. Z.J. Lian, S.Y. Lou, Symmetries and exact solutions of the Sharma-Tass-Olver equation. Nonlinear Anal. 63, 1167–1177 (2005)

    Article  MathSciNet  Google Scholar 

  47. C.J. Wang, Dynamic behavior of traveling waves for the Sharma-Tasso-Olver equation. Nonlinear Dyn. 85(2), 1119–1126 (2016)

    Article  MathSciNet  Google Scholar 

  48. A.M. Wazwaz, S.A. El-Tantawy, New (3+1)-dimensional equations of Burgers type and Sharma-Tasso-Olver type: multiple-soliton solutions. Nonlinear Dyn. 87(4), 2457–2461 (2017)

    Article  MathSciNet  Google Scholar 

  49. M.S. Ullah, H.O. Roshid, F.S. Alshammari, M.Z. Ali, Collision phenomena among the solitons, periodic and Jacobi elliptic functions to a (3+1)-dimensional Sharma-Tasso-Olver-like model. Results Phys. 36, 105412 (2022)

    Article  Google Scholar 

  50. M.S. Ullah, H.O. Roshid, W.X. Ma, M.Z. Ali, Z. Rahman, Interaction phenomena among lump, periodic and kink wave solutions to a (3+1)-dimensional Sharma-Tasso-Olver-like equation. Chin. J. Phys. 68(6), 699–711 (2020)

    Article  MathSciNet  Google Scholar 

  51. Z.Z. Kang, T.C. Xia, W.X. Ma, Abundant multiwave solutions to the (3+1)-dimensional Sharma-Tasso-Olver-like equation. Proc. Roman. Acad. A 20(2), 114–121 (2019)

    MathSciNet  Google Scholar 

  52. M. Raheel, M. Inc, E. Tala-Tebue, K.H. Mahmoud, Breather, kink and rogue wave solutions of Sharma-Tasso-Olver-like equation. Opt. Quant. Electron. 54(9), 1–14 (2022)

    Article  Google Scholar 

  53. C.K. Kuo, W.X. Ma, A study on resonant multi-soliton solutions to the (2+1)-dimensional Hirota-Satsuma-Ito equations via the linear superposition principle. Nonlinear Anal. 190, 111592 (2020)

    Article  MathSciNet  Google Scholar 

  54. X.B. Hu, R. Bullough, A Bäcklund transformation and nonlinear superposition formula of the Caudrey-Dodd-Gibbon-Kotera-Sawada hierarchy. J. Phys. Soc. Jpn. 67, 772–777 (1998)

    Article  ADS  Google Scholar 

  55. X.Z. Hao, S.Y. Lou, Decompositions and linear superpositions of B-type Kadomtsev–Petviashvili equations. Math. Methods Appl. Sci. 45, 5774–5796 (2022)

    Article  MathSciNet  ADS  Google Scholar 

  56. Z.W. Miao, X.R. Hu, Y. Chen, Interaction phenomenon to (1+1)-dimensional Sharma-Tasso-Olver-Burgers equation. Appl. Math. Lett. 112, 106722 (2021)

    Article  MathSciNet  Google Scholar 

  57. W.X. Ma, Y. Zhou, Lump solutions to nonlinear partial differential equations via Hirota bilinear forms. J. Differ. Equ. 264, 2633–2659 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  58. W. Tan, W. Zhang, J. Zhang, Evolutionary behavior of breathers and interaction solutions with M-solitons for (2+1)-dimensional KdV system. Appl. Math. Lett. 101, 106063 (2020)

    Article  MathSciNet  Google Scholar 

  59. P.F. Han, Y. Zhang, Linear superposition formula of solutions for the extended (3+1)-dimensional shallow water wave equation. Nonlinear Dyn. 109, 1019–1032 (2022)

    Article  Google Scholar 

  60. M. Younis, S. Ali, S.T.R. Rizvi, M. Tantawy, K.H. Tariq, A. Bekir, Investigation of solitons and mixed lump wave solutions with (3+1)-dimensional potential-YTSF equation. Commun. Nonlinear Sci. Numer. Simul. 94, 105544 (2021)

    Article  MathSciNet  Google Scholar 

  61. Z.L. Zhao, Y. Chen, B. Han, Lump soliton, mixed lump stripe and periodic lump solutions of a (2+1)-dimensional asymmetrical Nizhnik-Novikov-Veselov equation. Mod. Phys. Lett. B 31(14), 1750157 (2017)

    Article  MathSciNet  CAS  ADS  Google Scholar 

  62. G.Q. Xu, Painlevé analysis, lump-kink solutions and localized excitation solutions for the (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation. Appl. Math. Lett. 97, 81–87 (2019)

    Article  MathSciNet  Google Scholar 

  63. S.J. Chen, W.X. Ma, X. Lü, Bäcklund transformation, exact solutions and interaction behaviour of the (3+1)-dimensional Hirota-Satsuma-Ito-like equation. Commun. Nonlinear Sci. Numer. Simul. 83, 105135 (2020)

    Article  MathSciNet  Google Scholar 

  64. J. Manafian, B.M. Ivatloo, M. Abapour, Breather wave, periodic, and cross-kink solutions to the generalized Bogoyavlensky-Konopelchenko equation. Math. Methods Appl. Sci. 43(4), 1753–1774 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  65. X.R. Hu, S.N. Lin, L. Wang, Integrability, multiple-cosh, lumps and lump-soliton solutions to a (2+1)-dimensional generalized breaking soliton equation. Commun. Nonlinear Sci. Numer. Simul. 91, 105447 (2020)

    Article  MathSciNet  Google Scholar 

  66. C.C. Hu, B. Tian, X.X. Du, C.R. Zhang, Bright/dark breather-soliton, lump wave-soliton and rogue wave-soliton interactions for a (3+1)-dimensional generalized B-type Kadomtsev–Petviashvili equation in fluid mechanics. Nonlinear Dyn. 108(2), 1585–1598 (2022)

    Article  Google Scholar 

  67. X.X. Du, B. Tian, Y. Yin, Lump, mixed lump-kink, breather and rogue waves for a B-type Kadomtsev–Petviashvili equation. Wave Random Complex. 31(1), 101–116 (2021)

    Article  MathSciNet  ADS  Google Scholar 

  68. J. Manafian, O.A. Ilhan, A. Alizadeh, Periodic wave solutions and stability analysis for the KP-BBM equation with abundant novel interaction solutions. Phys. Scr. 95(6), 065203 (2020)

    Article  CAS  ADS  Google Scholar 

  69. R.F. Zhang, S.D. Bilige, T. Fang, T. Chaolu, New periodic wave, cross-kink wave and the interaction phenomenon for the Jimbo-Miwa-like equation. Comput. Math. Appl. 78, 754–764 (2019)

    Article  MathSciNet  Google Scholar 

  70. Y.Z. Li, J.G. Liu, Multiple periodic-soliton solutions of the (3+1)-dimensional generalised shallow water equation. Pramana-J. Phys. 90, 71 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11371326, 11975145 and 12271488).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Zhang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the research effort and the publication of this paper.

Appendix

Appendix

$$\begin{aligned} \begin{aligned} \mu _{0}&=h_{1}^{2}+u_{0}^{2},\mu _{1}=\lambda _{1}h_{1}(h_{1}^{2}+3u_{0}^{2})+h_{4}, \quad \mu _{8}=h_{1}(3\lambda _{1}h_{1}+2\lambda _{2}h_{2}+2\lambda _{3}h_{3}), \\ \mu _{2}&=\lambda _{1}h_{1}^{2}(h_{1}^{2}-3u_{0}^{2})-2h_{1}h_{4}, \quad \mu _{4}=\lambda _{1}u_{0}^{2}(m_{i}^{2}-h_{1}^{2})(h_{1}^{2}-3u_{0}^{2}) +2h_{1}h_{4}(m_{i}^{2}+u_{0}^{2}), \\ \mu _{3}&=\lambda _{1}h_{1}^{2}(3u_{0}^{2}-h_{1}^{2})+2h_{1}h_{4}, \quad \mu _{5}=\lambda _{1}u_{0}^{2}(\alpha _{j}^{2}+h_{1}^{2})(h_{1}^{2}-3u_{0}^{2}) +2h_{1}h_{4}(\alpha _{j}^{2}-u_{0}^{2}), \\ \mu _{6}&=3\lambda _{1}(h_{1}^{2}-m_{i}^{2})+2\lambda _{3}(h_{1}h_{3}-m_{i}p_{i}), \quad \mu _{7}=3\lambda _{1}(h_{1}^{2}+\alpha _{j}^{2})+2\lambda _{2}(h_{1}h_{2}+\alpha _{j}\beta _{j}), \\ \mu _{9}&=\lambda _{1}m_{i}^{2}(m_{i}^{2}-3u_{0}^{2})-\mu _{8}(u_{0}^{2}+m_{i}^{2}), \quad \mu _{11}=3\lambda _{1}(h_{1}^{2}-m_{i}^{2})+2\lambda _{2}(h_{1}h_{2}-m_{i}n_{i}), \\ \mu _{10}&=\lambda _{1}\alpha _{j}^{2}(\alpha _{j}^{2}+3u_{0}^{2})-\mu _{8}(u_{0}^{2}-\alpha _{j}^{2}), \quad \mu _{12}=3\lambda _{1}(h_{1}^{2}+\alpha _{j}^{2})+2\lambda _{3}(h_{1}h_{3}+\alpha _{j}\gamma _{j}),\\ \mu _{13}&=\lambda _{1}u_{0}^{2}(h_{1}^{2}-3u_{0}^{2})(a_{i}^{2}-m_{i}^{2}+h_{1}^{2}) +2h_{1}h_{4}(a_{i}^{2}-m_{i}^{2}-u_{0}^{2}), \\ \mu _{14}&=\lambda _{1}u_{0}^{2}(h_{1}^{2}-3u_{0}^{2})(a_{i}^{2}-m_{i}^{2}-h_{1}^{2}) +2h_{1}h_{4}(a_{i}^{2}-m_{i}^{2}+u_{0}^{2}), \\ \mu _{15}&=\lambda _{1}u_{0}^{2}(h_{1}^{2}-3u_{0}^{2})(s_{j}^{2}-\alpha _{j}^{2}+h_{1}^{2}) +2h_{1}h_{4}(s_{j}^{2}-\alpha _{j}^{2}-u_{0}^{2}), \\ \mu _{16}&=\lambda _{1}u_{0}^{2}(h_{1}^{2}-3u_{0}^{2})(s_{j}^{2}-\alpha _{j}^{2}-h_{1}^{2}) +2h_{1}h_{4}(s_{j}^{2}-\alpha _{j}^{2}+u_{0}^{2}). \end{aligned} \end{aligned}$$
(59)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, PF., Zhang, Y. Superposition behavior of the lump solutions and multiple mixed function solutions for the (3+1)-dimensional Sharma–Tasso–Olver-like equation. Eur. Phys. J. Plus 139, 157 (2024). https://doi.org/10.1140/epjp/s13360-024-04953-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-04953-2

Navigation