Skip to main content
Log in

A comparative study of different approaches for heavy quark energy loss, based on the latest experimental data

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This paper examines collisional and radiative energy loss of heavy quarks in quark–gluon plasma and presents a comparative analysis of three different methods for energy dissipation. The study focuses on calculation of the nuclear modification factor (\(R_{AA}\)) of charm quarks in Pb–Pb collisions at \(\sqrt{S_{NN}}=\) 5.02 TeV. All three methods are examined using the same numerical evolution based on the well-known Fokker–Planck equation by considering critical phenomena like a non-equilibrium state at the onset of heavy ion collisions. The outcomes of each approach are compared with the latest data from ALICE and ATLAS experiments spanning from 2018 to 2022. This study aims to compare the degree of agreement between each approach and recently obtained experimental data, in the intermediate and high \(P_T\) regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The data sets generated during the current study are available from the corresponding author on reasonable request.]

References

  1. M. H. Seymour. https://doi.org/10.48550/arXiv.hep-ph/0505192. Report Number: CERN-PH-TH-2005-083

  2. J.C. Collins, M.J. Perry, Superdense matter: Neutrons or asymptotically free quarks? Phys. Rev. Lett. 34, 1353 (1975). https://doi.org/10.1103/PhysRevLett.34.1353

    Article  ADS  Google Scholar 

  3. E.V. Shuryak, Theory of Hadronic plasma. Sov. Phys. JETP 47 (1978) 212–219 https://inspirehep.net/literature/121016 [Zh. Eksp. Teor. Fiz. 74, 408 (1978)]

  4. G. Martinez, Advances in Quark Gluon plasma. https://doi.org/10.48550/arXiv.1304.1452

  5. R. Hagedorn, Nuovo Cim. Suppl. 3, 147-186 (1965) CERN-TH-520. https://inspirehep.net/files/0f47965fc72ecec80d0e4f8f71f7d9e5

  6. J. Adams [STAR Collaboration], et al., Experimental and theoretical challenges in the search for the quark–gluon plasma: the STAR Collaboration’s critical assessment of the evidence from RHIC collisions. Nucl. Phys. A 757, 102–183 (2005). https://doi.org/10.1016/j.nuclphysa.2005.03.085

  7. K. Adcox [PHENIX Collaboration] et al., Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: experimental evaluation by the PHENIX collaboration. Nucl. Phys. A 757, 184–283 (2005). https://doi.org/10.1016/j.nuclphysa.2005.03.086

  8. J.-Y. Ollitrault, Relativistic hydrodynamics for heavy-ion collisions. Eur. J. Phys. 29, 275–302 (2008). https://doi.org/10.1088/0143-0807/29/2/010

    Article  Google Scholar 

  9. H. Song, S.A. Bass, U. Heinz, T. Hirano, C. Shen, Phys. Rev. Lett. 106, 192301 (2011). https://doi.org/10.1103/PhysRevLett.106.192301

    Article  ADS  Google Scholar 

  10. F. Becattini, The Quark Gluon Plasma and relativistic heavy ion collisions in the LHC era. J. Phys: Conf. Ser. 527, 012012 (2014). https://doi.org/10.1088/1742-6596/527/1/012012

    Article  Google Scholar 

  11. H. van Hees, V. Greco, R. Rapp, Heavy-quark probes of the quark–gluon plasma at RHIC. Phys. Rev. C 73, 034913 (2006). https://doi.org/10.1103/PhysRevC.73.034913

    Article  ADS  Google Scholar 

  12. R. Rapp, H. van Hees, Heavy Quarks in the Quark–Gluon Plasma. Quark–Gluon Plasma 4, 111–206 (2010). https://doi.org/10.1142/9789814293297_0003

    Article  Google Scholar 

  13. C. Chattopadhyay, U. Heinz, S. Pal, G. Vujanovic, Higher order and anisotropic hydrodynamics for Bjorken and Gubser flows. Phys. Rev. C 97, 6,064909 (2018). https://doi.org/10.1103/PhysRevC.97.064909. arXiv:1801.07755 [nucl-th]

    Article  Google Scholar 

  14. S. Grozdanov, N. Kaplis, Constructing higher-order hydrodynamics: The third order. Phys. Rev. D 93, 6, 066012 (2016). https://doi.org/10.1103/PhysRevD.93.066012. arXiv:1507.02461 [hep-th]

    Article  MathSciNet  Google Scholar 

  15. M. Ruggieri, F. Scardina, S. Plumari, V. Greco, Phys. Rev. C 89(5), 054914 (2014). https://doi.org/10.1103/PhysRevC.89.054914

    Article  ADS  Google Scholar 

  16. E. Braaten, R.D. Pisarski, Resummation and gauge invariance of the gluon damping rate in Hot QCD. Phys. Rev. Lett. 64, 1338 (1990). https://doi.org/10.1103/PhysRevLett.64.1338

    Article  ADS  Google Scholar 

  17. X. Dong, V. Greco, Heavy quark production and properties of Quark–Gluon Plasma. Prog. Part. Nucl. Phys. 104, 97–141 (2019). https://doi.org/10.1016/j.ppnp.2018.08.001

    Article  ADS  Google Scholar 

  18. J. Zhao, K. Zhou, S. Chen, P. Zhuang, Prog. Part. Nucl. Phys. 114, 103801 (2020). https://doi.org/10.1016/j.ppnp.2020.103801

    Article  Google Scholar 

  19. X. Dong, Y.J. Lee, R. Rapp, Open heavy-flavor production in heavy-ion collisions. Ann. Rev. Nucl. Part. Sci. 69, 417–445 (2019). https://doi.org/10.1146/annurev-nucl-101918-023806

    Article  ADS  Google Scholar 

  20. S.K. Das, J. Alam, P. Mohanty, Drag of heavy quarks in Quark gluon plasma at the large hadron collider. Phys. Rev. C 82, 014908 (2010). https://doi.org/10.1103/PhysRevC.82.014908. arXiv:1003.5508

    Article  ADS  Google Scholar 

  21. P.K. Srivastava, B.K. Patra, Drag and diffusion of heavy quarks in a hot and anisotropic QCD medium. Eur. Phys. J. A 53(6), 116 (2017). https://doi.org/10.1140/epja/i2017-12299-0

    Article  ADS  Google Scholar 

  22. Y. Akamatsu, T. Hatsuda, T. Hirano, Heavy Quark diffusion with relativistic Langevin dynamics in the Quark–Gluon fluid. Phys. Rev. C 79, 054907 (2009). https://doi.org/10.1103/PhysRevC.79.054907

    Article  ADS  Google Scholar 

  23. J.D. Bjorken, Fermilab, Report number: https://lss.fnal.gov/archive/1982/pub/Pub-82-059-T.pdf FERMILAB-PUB-82-059-THY; FERMILAB-PUB-82-059-T (1982)

  24. M. Thoma, M. Gyulassy, Nucl. Phys. B 351, 491–506 (1991). https://doi.org/10.1016/S0550-3213(05)80031-8

    Article  ADS  Google Scholar 

  25. R.D. Pisarski, Phys. A 158, 146–157 (1989)

    Article  Google Scholar 

  26. E. Braaten, M.H. Thoma, Phys. Rev. D 44(9), R2625 (1991). https://doi.org/10.1103/PhysRevD.44.R2625

    Article  ADS  Google Scholar 

  27. K. Saraswat, P. Shukla, V. Kumar, V. Singh, Energy loss of heavy quarks and B and D meson spectra in PbPb collisions at LHC energies. Nucl. Phys. A 961, 169–182 (2017). https://doi.org/10.1016/j.nuclphysa.2017.02.013

    Article  ADS  Google Scholar 

  28. K. Saraswat, P. Shukla, V. Singh, Nucl. Phys. A 943, 83–100 (2015). https://doi.org/10.1016/j.nuclphysa.2015.08.005. [arXiv:1506.06604 [nucl-ex]]

    Article  ADS  Google Scholar 

  29. R. Abir, U. Jamil, M.G. Mustafa, D.K. Srivastava, Phys. Lett. B 715, 183–189 (2012). https://doi.org/10.1016/j.physletb.2012.07.044. [arXiv:1203.5221 [hep-ph]]

    Article  ADS  Google Scholar 

  30. M. Gyulassy, P. Levai, I. Vitev, Phys. Rev. Lett. 85, 5535–5538 (2000). https://doi.org/10.1103/PhysRevLett.85.5535

    Article  ADS  Google Scholar 

  31. M. Djordjevic, M. Gyulassy, Nucl. Phys. A 733, 265–298 (2004). https://doi.org/10.1016/j.nuclphysa.2003.12.020

    Article  ADS  Google Scholar 

  32. S. Wicks, W. Horowitz, M. Djordjevic, M. Gyulassy, Nucl. Phys. A 784, 426–442 (2007). https://doi.org/10.1016/j.nuclphysa.2006.12.048

    Article  ADS  Google Scholar 

  33. V. Khachatryan et al., (CMS Collaboration). JHEP 04, 039 (2017). https://doi.org/10.1007/JHEP04(2017)039. arXiv:1611.01664 [nucl-ex]

  34. M.L. Miller, K. Reygers, S.J. Sanders, P. Steinberg, Glauber modeling in high energy nuclear collisions. Ann. Rev. Nucl. Part. Sci. 57, 205–243 (2007). https://doi.org/10.1146/annurev.nucl.57.090506.123020

    Article  ADS  Google Scholar 

  35. D. Zigic, B. Ilic, M. Djordjevic, M. Djordjevic, Exploring the initial stages in heavy-ion collisions with high-\(P_T\)\(R_{AA}\) and \(\nu _2\) theory and data. Phys. Rev. C 101, 6, 064909 (2020). https://doi.org/10.1103/PhysRevC.101.064909

    Article  Google Scholar 

  36. M. Miller, K. Reygers, S.J. Sanders, P. Steinberg, Glauber modeling in high energy nuclear collisions. Ann. Rev. Nucl. Part. Sci. 57, 205–243 (2007). https://doi.org/10.1146/annurev.nucl.57.090506.123020. arXiv:nucl-ex/0701025

    Article  ADS  Google Scholar 

  37. S. Tripathy, A. Khuntia, S.K. Tiwari, R. Sahoo, Transverse momentum spectra and nuclear modification factor using Boltzmann transport equation with flow in Pb+Pb collisions at \(\sqrt{S_{NN}}=2.76\) TeV. Eur. Phys. J. A 53(5), 99 (2017). https://doi.org/10.1140/epja/i2017-12283-8

    Article  ADS  Google Scholar 

  38. S. Tripathy et al., Eur. Phys. J. A 52(9), 289 (2016). https://doi.org/10.1140/epja/i2016-16289-4

    Article  ADS  Google Scholar 

  39. L. Qiao, G. Che, J. Gu, H. Zheng, W. Zhang, Nuclear modification factor in Pb–Pb and p-Pb collisions using Boltzmann transport equation. J. Phys. G 47, 7, 075101 (2020). https://doi.org/10.1088/1361-6471/ab8744

    Article  Google Scholar 

  40. H. van Hees, R. Rapp, Phys. Rev. C 73, 034913 (2006). https://doi.org/10.1103/PhysRevC.73.034913

    Article  ADS  Google Scholar 

  41. V. Palleschi, F. Sarri, G. Marcozzi, M.R. Torquati, Numerical solution of the Fokker–Planck equation: A fast and accurate algorithm, Physics Letters A, 146(7-8), (1990). https://doi.org/10.1016/0375-9601(90)90717-3

  42. S. Chatterjee, S. Das, L. Kumar, D. Mishra, B. Mohanty, R. Sahoo, N. Sharma, Freeze-out parameters in heavy-ion collisions at AGS, SPS, RHIC, and LHC energies. Adv. High Energy Phys., vol. 2015, Article ID 349013. https://doi.org/10.1155/2015/349013

  43. A. Bazavov et al., [HotQCD Collaboration], Equation of state in (2+1)-flavor QCD. Phys. Rev. D 90, 094503 (2014). https://doi.org/10.1103/PhysRevD.90.094503

    Article  ADS  Google Scholar 

  44. A. Mirjalili, J. Sheibani, K. Javidan, Impact of EMC effect on D meson modification factor in equilibrating QGP. Eur. Phys. J. Plus 137, 807 (2022). https://doi.org/10.1140/epjp/s13360-022-02966-3

    Article  Google Scholar 

  45. M. Modarres, R. Taghavi, R.A. Nik, R.K. Valeshabadi, Phys. Rev. D 104, 5, 056005 (2021). https://doi.org/10.1103/PhysRevD.104.056005

    Article  Google Scholar 

  46. N. Olanj, M. Modarres, Nucl. Phys. A 998, 121735 (2020). https://doi.org/10.1016/j.nuclphysa.2020.121735

    Article  Google Scholar 

  47. ALICE collaboration, JHEP 10, 174 (2018). https://doi.org/10.1007/JHEP10(2018)174, Report number: CERN-EP-2018-066

  48. ALICE collaboration, Phys. Lett. B 820, 136558 (2021). https://doi.org/10.1016/j.physletb.2021.136558, Report number: CERN-EP-2020-186

  49. ALICE collaboration, JHEP 01, 174 (2022). https://doi.org/10.1007/JHEP01(2022)174, Report number: CERN-EP-2021-213

  50. ATLAS collaboration, Phys. Lett. B 829, 137077 (2022). https://doi.org/10.1016/j.physletb.2022.137077, Report number: CERN-EP-2021-153

  51. F. James, M. Roos, Comput. Phys. Commun. 10, 343–367 (1975). https://doi.org/10.1016/0010-4655(75)90039-9

    Article  ADS  Google Scholar 

  52. C. Peterson et al., Phys. Rev. D 27, 105 (1983). https://doi.org/10.1103/PhysRevD.27.105

    Article  ADS  Google Scholar 

  53. A. Jaiswal, Relativistic third-order dissipative fluid dynamics from kinetic theory. Phys. Rev. C 88, 021903 (2013). https://doi.org/10.1103/PhysRevC.88.021903

    Article  ADS  Google Scholar 

  54. C. Chattopadhyay, A. Jaiswal, S. Pal, R. Ryblewski, Relativistic third-order viscous corrections to the entropy four-current from kinetic theory. Phys. Rev. C 91, 2, 024917 (2015). https://doi.org/10.1103/PhysRevC.91.024917

    Article  Google Scholar 

Download references

Acknowledgements

Special thanks go to Dr. Samira Shoeibi for providing guidance in using the Minuit package. This work is supported by the Ferdowsi University of Mashhad under grant numbers 3/58322 (1401/07/23).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Taghavi-Shahri.

Appendix

Appendix

1.1 A: Energy loss

As mentioned before, in order to calculate drag and diffusion coefficients in the Fokker–Planck equation, we must calculate the energy loss of heavy quarks while passing through the plasma and consider both modes of energy loss through collisions and radiation. Here, we introduce three common approaches for calculating collisional energy loss and one of the most common approaches to calculating radiant energy loss.

The first calculation of collisional energy loss (Model A in our article) is proposed by Bjorken [23] which is:

$$\begin{aligned} -\frac{dE}{dx}=\frac{16\pi }{9}\alpha _s^2T^2\ln \left( \frac{4pT}{k_D^2}\right) \left[ \exp \left( -\frac{k_D}{T}\right) \left( 1+\frac{k_D}{T}\right) \right] \end{aligned}$$
(10)

P is the momentum of the particle, T is the temperature of the plasma, and \(k_D = \sqrt{3} m_g\). We also have:

$$\begin{aligned} m_g^2 = \frac{4\pi \alpha _s T^2}{3}\left( 1+\frac{n_f}{6}\right) \end{aligned}$$
(11)

Another approach for calculating collisional energy loss is presented by Thoma and Gyulassy [24]. Through this approach which is our second model, we have:

$$\begin{aligned} -\frac{dE}{dx} = \frac{16\pi }{9} \alpha _s^2 T^2 \ln \left( \frac{k_{\text {max}}}{k_D}\right) \frac{1}{\nu ^2}\left[ \nu + \frac{\left( \nu ^2 - 1\right) }{2} \ln \left( \frac{1+\nu }{1-\nu }\right) \right] \end{aligned}$$
(12)

In which:

$$\begin{aligned} k_{\text {max}} \approx \frac{4pT}{\sqrt{p^2 + M^2} - p + 4T} \end{aligned}$$
(13)

Model C for collisional energy loss [26] involved calculating the energy loss of a quark with energy E in two different limits: \(E \ll \frac{M^2}{T} \text { and } E \gg \frac{M^2}{T}\)

A QED calculation has been used to determine contributions to the energy loss for some parts of the calculation. To achieve this, “e” in the QED calculations will be replaced by the \(g_s=\frac{4}{3}\sqrt{4\pi \alpha _s}\) in the QCD calculations. The thermal photon mass \(m=eT/3\) is also replaced by the thermal gluon mass which is \(m_g=g_s T \sqrt{\frac{1+n_f/6}{3}}\)

So for the \(E \ll \frac{M^2}{T}\) limit we will have:

$$\begin{aligned} -\frac{dE}{dx} = \frac{8\pi \alpha _s^2 T^2}{3}\left( 1+\frac{n_f}{6}\right) \left[ \frac{1}{v}-\frac{1-v^2}{2v^2}\ln \left( \frac{1+v}{1-v}\right) \right] \ln \left( \frac{2^{n_f/(6+n_f)}B(v)ET}{m_g M}\right) \end{aligned}$$
(14)

B(v) is a smooth function that starts at \(B(0)=0.604\), increases to \(B(0.88)=0.731\), and then decreases to \(B(1)=0.629\).

And in the \(E \gg \frac{M^2}{T}\) limit, we have:

$$\begin{aligned} -\frac{dE}{dx} = \frac{8\pi \alpha _s^2 T^2}{3}(1+\frac{n_f}{6})\ln \left( 2^{\frac{n_f}{12+2n_f}} 0.920 \frac{\sqrt{ET}}{m_g}\right) \end{aligned}$$
(15)

A smooth connection between two limits is required for the intermediate region, E \(\approx M^2/T\). Calculations indicate that we can use the first equation up to \(E_{cross} = 1.8 M^2/T\) and then switch to the second one.

Also, the radiative energy loss of a heavy quark in a QGP is calculated as follows:

$$\begin{aligned} -\frac{dE}{dx}& {} = 24\alpha _s^3 \rho _{\text {QGP}} \frac{1}{\mu _g} (1-\beta _1) \left( \sqrt{\frac{1}{1-\beta _1} \ln \frac{1}{\beta _1}} - 1\right) F(\delta ) \end{aligned}$$
(16)
$$\begin{aligned} F(\delta )& {} = 2\delta - \frac{1}{2} \ln \left( \frac{1+\frac{M^2}{s}e^{2\delta }}{1+\frac{M^2}{s} e^{-2\delta }}\right) - \left( \frac{\frac{M^2}{s}\sinh (2\delta )}{1+2\frac{M^2}{s}\cosh (2\delta )+\frac{M^4}{s^2}}\right) \end{aligned}$$
(17)
$$\begin{aligned} \delta& {} = \frac{1}{2} \ln \left[ \frac{1}{1 - \beta _1} \ln \left( \frac{1}{\beta _1} \right) \left( 1 + \sqrt{1 - \frac{1 - \beta _1}{\ln (1/\beta _1)}} \right) ^2 \right] \end{aligned}$$
(18)
$$\begin{aligned} C& {} = \frac{3}{2} - \frac{M^2}{48E^2 T^2 \beta _0} \ln \left[ \frac{M^2+6ET(1+\beta _0)}{M^2+6ET(1-\beta _0)} \right] \end{aligned}$$
(19)

for more details see [27].

1.2 B: Hadronization

In order to find the \(P_T\) distribution function for D meson, one can use the Peterson fragmentation function which is \(D_c^D (z) = \frac{1}{{z\left( z - \frac{1}{z} + \frac{\epsilon }{{1-z}}\right) ^2}}\) [52]. Here, \(z = \frac{P_D}{P_C}\) is the momentum fraction of the D meson which is fragmented from the charm quark.

We extend our calculations up to the hadronization stage for the ALICE 2022 dataset to assess the effect of hadronization on \(R_{AA}\) shape. Figure 6 compares energy loss models before and after hadronization.

Fig. 6
figure 6

Left panel a compares three energy loss models through \(R_{AA}\) of D meson and right panel b compares these models through \(R_{AA}\) of charm quark

It can be seen from Fig. 6 that the performance of the three models, in comparison to each other, remains relatively unchanged before and after hadronization. Therefore, the comparison of changes in dE/dx appears to be valid up to the pre-hadronization stage, aligning with the conventional assumption in other studies [37,38,39,40].

1.3 C: Hydrodynamic evolution equations of QGP

To consider the profile of temperature, it is important to note that we have solved the evolution equation using the Bjorken flow. Figure 7 shows the temperature profile resulting from Eq. (1).

We have constructed the hydrodynamic evolution equations of the QGP in the Milne coordinates (\(\tau\),r,\(\phi\),\(\eta\)) as Bjorken flow, where:

$$\begin{aligned} \begin{aligned} \tau = \sqrt{t^2 - z^2},&\quad \eta = \tanh ^{-1}\left( \frac{z}{t}\right) , \\ r = \sqrt{x^2 + y^2},&\quad \phi = \tan ^{-1}\left( \frac{y}{x}\right) . \end{aligned} \end{aligned}$$
(20)

in which r and \(\phi\) express the transverse plane and \(\eta\) is the rapidity (along the beam direction z).

According to the boost-invariance along the \(\eta\), rotational and translational invariance in the transverse plane, as well as the reflection symmetry under \(\eta \leftrightarrow -\eta\), the only flow due to these symmetries is \(u^\mu = (u^\tau , u^x, u^y, u^\eta ) = (1, 0, 0, 0)\). This means that (r, \(\phi\), \(\eta\)) are independent of the macroscopic physical quantities.

Considering dissipative hydrodynamics, the energy-momentum tensor can be defined as:

$$\begin{aligned} T^{\mu \nu } = \langle p^\mu p^\nu \rangle = \epsilon u^\mu u^\nu + P \Delta ^{\mu \nu } + \pi ^{\mu \nu } \end{aligned}$$
(21)

where \(\epsilon\) and P are energy density and pressure, which are functions of the QGP temperature [13, 14]. Also we have \(\Delta ^{\mu \nu } = g^{\mu \nu } + u^\mu u^\nu\) and \(\mu ^{\mu \nu }\) is the shear stress tensor.

The evolution equations for the \(\epsilon\) and \(u^\mu\) are extracted through the \(\partial _\mu T^{\mu \nu } = 0\) as follows:

$$\begin{aligned}{} & {} \dot{\epsilon } + (\epsilon + P)\theta + \pi ^{\mu \nu } \sigma _{\mu \nu } = 0 \end{aligned}$$
(22)
$$\begin{aligned}{} & {} (\epsilon + P) \dot{u}^\alpha + \nabla ^\alpha P + \Delta _\nu ^\alpha \partial _\mu \pi ^{\mu \nu } = 0 \end{aligned}$$
(23)

There are different expressions for the shear stress tensor. We have used the published expansion of the \(\pi ^{\mu \nu }\) up to the third-order terms [13, 53, 54].

The time evolution of \(\epsilon\) and \(\pi\) are as follows:

$$\begin{aligned} \frac{d\epsilon }{d\tau }& {} = -\frac{1}{\tau }\left( \epsilon + P - \pi \right) \end{aligned}$$
(24)
$$\begin{aligned} \frac{d\pi }{d\tau }& {} = -\frac{\pi }{\tau _\pi } + \frac{1}{\tau }\left( \frac{4}{3}\beta _\pi - \lambda \pi - \chi \frac{\pi ^2}{\beta _\pi }\right) \end{aligned}$$
(25)

where \(\beta _\pi = \frac{4P}{5}\), \(\lambda = \frac{38}{21}\) and \(\chi = \frac{72}{245}\) are third-order contribution coefficients of shear stress tensor expansion if we take \(\epsilon = 3 P\).

Fig. 7
figure 7

The profiles of temperature

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimi Nezhad, M., Taghavi-Shahri, F., Mehrabi Pari, S. et al. A comparative study of different approaches for heavy quark energy loss, based on the latest experimental data. Eur. Phys. J. Plus 139, 92 (2024). https://doi.org/10.1140/epjp/s13360-024-04881-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-04881-1

Navigation