Skip to main content
Log in

Effect of structural parameters and applied external fields on the third harmonic generation coefficient of AlGaAs/GaAs three-step quantum well

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This presented work includes the first in-depth theoretical investigation of the third harmonic generation (THG) coefficients of the AlGaAs/GaAs three-step quantum well. We explore how these optical properties evolve when influenced by tunable structural parameters and various external fields, including electric, magnetic, and non-resonant intense laser fields. Firstly, we obtained the subband energy eigenvalues and eigenfunctions of the structure using the diagonalization method within the framework of the effective mass and envelope function approach. Then, we calculated the THG coefficients of the structure using the compact density matrix approximation. The obtained numerical results demonstrate that, within a certain range of structural parameter adjustments and applied external field changes, significant shifts (red or blue) occur in the resonance peak of the THG coefficient. These changes elegantly reflect the practical implications of the presented study. Finally, we discuss the optimality of the structure for a certain amount of applied external fields, which can be crucial for pre-experimental studies applications and the design of optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: This part gives general information for the application of the proposed three-step QW system.]

References

  1. M. Fickenscher, T. Shi, H.E. Jackson, L.M. Smith, J.M. Yarrison-Rice, C. Zheng, P. Miller, J. Etheridge, B.M. Wong, Q. Gao, S. Deshpande, H.H. Tan, C. Jagadish, Optical, structural, and numerical investigations of GaAs/AlGaAs core-multishell nanowire quantum well tubes. Nano Lett. 13, 1016–1022 (2013)

    Article  ADS  Google Scholar 

  2. K. Pemasiri, H.E. Jackson, L.M. Smith, B.M. Wong, S. Paiman, Q. Gao, H.H. Tan, C. Jagadish, Quantum confinement of excitons in wurtzite InP nanowires. J. Appl. Phys. 117 (2015).

  3. H. Lan, Y. Ding, Ordering, positioning and uniformity of quantum dot arrays. Nano Today 7, 94–123 (2012)

    Article  Google Scholar 

  4. B.M. Wong, F. Léonard, Q. Li, G.T. Wang, Nanoscale effects on heterojunction electron gases in GaN/AlGaN core/shell nanowires. Nano Lett. 11, 3074–3079 (2011)

    Article  ADS  Google Scholar 

  5. D. Altun, O. Ozturk, B.O. Alaydin, E. Ozturk, Linear and nonlinear optical properties of a superlattice with periodically increased well width under electric and magnetic fields. Micro Nanostruct. 166, 207225 (2022)

    Article  Google Scholar 

  6. M.K. Bahar, P. Başer, Nonlinear optical specifications of the Mathieu quantum dot with screw dislocation. Eur. Phys. J. Plus 138, 724 (2023)

    Article  Google Scholar 

  7. İ Karabulut, S. Baskoutas, Linear and nonlinear optical absorption coefficients and refractive index changes in spherical quantum dots: effects of impurities, electric field, size, and optical intensity. J. Appl. Phys. 103, 073512 (2008)

    Article  ADS  Google Scholar 

  8. H. Dakhlaoui, S. Almansour, W. Belhadj, B.M. Wong, Modulating the conductance in graphene nanoribbons with multi-barriers under an applied voltage. Results in Physics 27, 104505 (2021)

    Article  Google Scholar 

  9. P.F. Yuh, K.L. Wang, Optical transitions in a step quantum well. J. Appl. Phys. 65, 4377–4381 (1989)

    Article  ADS  Google Scholar 

  10. F. Hao, J.P. Pang, M. Sugiyama, K. Tada, Y. Nakano, Field-induced optical effect in a five-step asymmetric coupled quantum well with modified potential. IEEE J. Quantum Electron. 34, 1197–1208 (1998)

    Article  ADS  Google Scholar 

  11. H. Dakhlaoui, The effects of doping layer location on the electronic and optical properties of GaN step quantum well. Superlattices Microstruct. 97, 439–447 (2016)

    Article  ADS  Google Scholar 

  12. R.L. Restrepo, F. Ungan, E. Kasapoglu, M.E. Mora-Ramos, A.L. Morales, C.A. Duque, The effects of intense laser field and applied electric and magnetic fields on optical properties of an asymmetric quantum well. Physica B 457, 165–171 (2015)

    Article  ADS  Google Scholar 

  13. J.C. Martínez-Orozco, K.A. Rodríguez-Magdaleno, J.R. Suárez-López, C.A. Duque, R.L. Restrepo, Absorption coefficient and relative refractive index change for a double δ-doped GaAs MIGFET-like structure: electric and magnetic field effects. Superlattices Microstruct. 92, 166–173 (2016)

    Article  ADS  Google Scholar 

  14. P. Başer, S. Elagoz, The hydrostatic pressure and temperature effects on hydrogenic impurity binding energies in lattice matched InP/In0.53Ga0.47As/InP square quantum well. Superlattices Microstruct. 102, 173–179 (2017)

    Article  ADS  Google Scholar 

  15. H. Dakhlaoui, Tunability of the optical absorption and refractive index changes in step-like and parabolic quantum wells under external electric field. Optik 168, 416–423 (2018)

    Article  ADS  Google Scholar 

  16. A. Turkoglu, H. Dakhlaoui, M.E. Mora-Ramos, F. Ungan, Optical properties of a quantum well with Razavy confinement potential: role of applied external fields. Physica E 134, 114919 (2021)

    Article  Google Scholar 

  17. H. Dakhlaoui, J.A. Vinasco, C.A. Duque, External fields controlling the nonlinear optical properties of quantum cascade laser based on staircase-like quantum wells. Superlattices Microstruct. 155, 106885 (2021)

    Article  Google Scholar 

  18. K.-X. Guo, C.-Y. Chen, Two-photon-resonant third-order nonlinear susceptibilities in parabolic quantum well wires. Physica B 262, 74–77 (1999)

    Article  ADS  Google Scholar 

  19. G.-H. Wang, Q. Guo, K.-X. Guo, Refractive index changes induced by the incident optical intensity in semiparabolic quantum wells. Chin. J. Phys.. J. Phys. 41, 296–306 (2003)

    Google Scholar 

  20. O. Ozturk, B.O. Alaydin, D. Altun, E. Ozturk, Intense laser field effect on the nonlinear optical properties of triple quantum wells consisting of parabolic and inverse-parabolic quantum wells. Laser Phys. 32, 035404 (2022)

    Article  ADS  Google Scholar 

  21. U. Yesilgul, F. Ungan, S. Sakiroglu, H. Sari, E. Kasapoglu, I. Sökmen, Nonlinear optical properties of a semi-exponential quantum wells: effect of high-frequency intense laser field. Optik 185, 311–316 (2019)

    Article  ADS  Google Scholar 

  22. B.O. Alaydin, D. Altun, E. Ozturk, Linear and nonlinear optical properties of semi-elliptical InAs quantum dots: effects of wetting layer thickness and electric field. Thin Solid Films 755, 139322 (2022)

    Article  ADS  Google Scholar 

  23. N.D. Hien, D.V. Thuan, C.A. Duque, E. Feddi, F. Dujardin, L.T.T. Phuong, B.D. Hoi, C.V. Nguyen, L.T.N. Tu, H.V. Phuc, N.N. Hieu, One- and two-photon-induced magneto-optical properties of hyperbolic-type quantum wells. Optik 185, 1261–1269 (2019)

    Article  ADS  Google Scholar 

  24. R. Khordad, H. Bahramiyan, Study of impurity position effect in pyramid and cone like quantum dots. Eur. Phys. J. Appl. Phys. 67, 20402 (2014)

    Article  ADS  Google Scholar 

  25. C.M. Duque, A.L. Morales, M.E. Mora-Ramos, C.A. Duque, Optical nonlinearities associated to applied electric fields in parabolic two-dimensional quantum rings. J. Lumin. 143, 81–88 (2013)

    Article  Google Scholar 

  26. A. Turkoglu, Regulation of optical properties by applied external fields for a quantum well with Hulthen potential. Laser Phys. 32, 035201 (2022)

    Article  ADS  Google Scholar 

  27. G. Liu, Y. Cao, R. Liu, G. Chen, F. Wu, Y. Zheng, Z. Chen, K. Guo, L. Lu, Terahertz laser field manipulation on the electronic and nonlinear optical properties of laterally-coupled quantum well wires. Opt. Express 30, 5200–5212 (2022)

    Article  ADS  Google Scholar 

  28. E.B. Al, E. Kasapoglu, F. Ungan, Dynamics of nonlinear optical rectification, second, and third harmonic generation in asymmetric triangular double quantum wells due to static electric and magnetic fields. Eur. Phys. J. Plus 137, 466 (2022)

    Article  Google Scholar 

  29. S. Sakiroglu, U. Yesilgul, F. Ungan, C.A. Duque, E. Kasapoglu, H. Sari, I. Sokmen, Electronic band structure of GaAs/AlxGa1−xAs superlattice in an intense laser field. J. Lumin. 132, 1584–1588 (2012)

    Article  Google Scholar 

  30. F. Ungan, U. Yesilgul, S. Şakiroğlu, E. Kasapoglu, H. Sari, I. Sökmen, Effects of an intense, high-frequency laser field on the intersubband transitions and impurity binding energy in semiconductor quantum wells. Phys. Lett. A 374, 2980–2984 (2010)

    Article  ADS  Google Scholar 

  31. N. Eseanu, Simultaneous effects of laser field and hydrostatic pressure on the intersubband transitions in square and parabolic quantum wells. Phys. Lett. A 374, 1278–1285 (2010)

    Article  ADS  Google Scholar 

  32. F.M.S. Lima, M.A. Amato, O.A.C. Nunes, A.L.A. Fonseca, B.G. Enders, Unexpected transition from single to double quantum well potential induced by intense laser fields in a semiconductor quantum well. J. Appl. Phys. 105, 123111 (2009)

    Article  ADS  Google Scholar 

  33. A.S. Durmuslar, M.E. Mora-Ramos, F. Ungan, Nonlinear optical properties of n-type asymmetric double delta doped quantum wells: role of high-frequency laser radiation, doping concentration and well width. Eur Phys J Plus 135, 442 (2020)

    Article  Google Scholar 

  34. M.E. Mora-Ramos, C.A. Duque, E. Kasapoglu, H. Sari, I. Sökmen, Electron-related nonlinearities in GaAs–Ga1−xAlxAs double quantum wells under the effects of intense laser field and applied electric field. J. Lumin. 135, 301–311 (2013)

    Article  Google Scholar 

  35. J.C. Martínez-Orozco, M.E. Mora-Ramos, C.A. Duque, Nonlinear optical rectification and second and third harmonic generation in GaAs δ-FET systems under hydrostatic pressure. J. Lumin. 132, 449–456 (2012)

    Article  Google Scholar 

  36. M.E. Mora-Ramos, C.A. Duque, E. Kasapoglu, H. Sari, I. Sökmen, Linear and nonlinear optical properties in a semiconductor quantum well under intense laser radiation: effects of applied electromagnetic fields. J. Lumin. 132, 901–913 (2012)

    Article  Google Scholar 

  37. Y.B. Yu, H.J. Wang, Third-harmonic generation in two-dimensional pseudo-dot system with an applied magnetic field. Superlattices Microstruct. 50, 252–260 (2011)

    Article  ADS  Google Scholar 

  38. A. Doyeol, C. Shun-lien, Calculation of linear and nonlinear intersubband optical absorptions in a quantum well model with an applied electric field. IEEE J. Quantum Electron. 23, 2196–2204 (1987)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sayrac.

Ethics declarations

Conflict of interest

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayrac, M., Dakhlaoui, H., Belhadj, W. et al. Effect of structural parameters and applied external fields on the third harmonic generation coefficient of AlGaAs/GaAs three-step quantum well. Eur. Phys. J. Plus 139, 57 (2024). https://doi.org/10.1140/epjp/s13360-024-04878-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-04878-w

Navigation