Skip to main content
Log in

Modeling of electronic spectra and optical responses of a semiconductor AlGaAs/GaAs quantum well with three-step barriers: the role of external perturbations and impurity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Multi-quantum barriers are of great importance in band engineering technologies and optoelectronics as they can build up quantum confinement via enhanced barrier heights. This theoretical study comprehensively investigated intersubband electronic and optical properties of an AlGaAs-based quantum well with three-step barriers. The electronic studies were performed within envelope wave functions and effective mass approximations under non-perturbative theory with hydrogenic donor impurity. The linear and the third-order nonlinear optical absorption coefficients and relative refractive index changes were examined under density matrix formalism taking into account a two-level system. Calculations were complicated to explore the role of externally applied static electric, magnetic and intense laser fields, and the donor impurity. The results showed an enhancement in the transition energies with incrementing all three external perturbations which is more impressive in the presence of a centrally positioned donor impurity. In the continue, the binding energies of donor impurity showed different affectability in the presence of external fields and the position of donor impurity. The binding energies were also found to be bigger as the donor impurity was localized at the highest probability of electron wave function. A blue-shift was detected in intersubband optical responses by enhancing all three applied fields in the presence and absence of donor impurity. The optical characteristics exhibited strongly decreased magnitudes after the addition of central impurity atom in both the presence and the absence of externally applied fields. Our findings provide a platform to design nonlinear devices for potential applications in optoelectronic technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

No Data associated in the manuscript.

References

  1. A. Di Francescantonio, A. Zilli, D. Rocco, L. Coudrat, F. Conti, P. Biagioni, L. Duò, A. Lemaître, C. De Angelis, G. Leo, M. Finazzi, M. Celebrano, Nat. Nanotechnol. 19, 298 (2024)

    Article  Google Scholar 

  2. L. Ye, W. Zhou, D. Huang, X. Jiang, Q. Guo, X. Cao, S. Yan, X. Wang, D. Jia, D. Jiang, Y. Wang, X. Wu, X. Zhang, Y. Li, H. Lei, H. Gou, B. Huang, Nat. Commun. 14, 5911 (2023)

    Article  ADS  Google Scholar 

  3. P. Panchadhyayee, B.K. Dutta, Sci. Rep. 12, 22369 (2022)

    Article  ADS  Google Scholar 

  4. M. Ebrahimzadeh, A. Haghighatzadeh, J. Dutta, Opt. Laser Technol. 140, 107092 (2021)

    Article  Google Scholar 

  5. A. Haghighatzadeh, B. Mazinani, M. Ostad, M. Shokouhimehr, J. Dutta, J. Mater. Sci. Mater. Electron. 32, 23385 (2021)

    Article  Google Scholar 

  6. M. Kiani, A. Haghighatzadeh, J. Inorg. Organomet. Polym. Mater. 31, 229 (2021)

    Article  Google Scholar 

  7. A.S. Durmuslar, H. Dakhlaoui, E.B. Al, F. Ungan, Eur. Phys. J. Plus 139, 3 (2024)

    Article  Google Scholar 

  8. M. Sayrac, W. Belhadj, H. Dakhlaoui, F. Ungan, Eur. Phys. J. Plus 138, 1013 (2023)

    Article  Google Scholar 

  9. A. Haghighatzadeh, M. Hosseini, S. Haghighi, M. Ataie-Dil, J. Aust. Ceram. Soc. 57, 993 (2021)

    Article  Google Scholar 

  10. S. Haghighi, A. Haghighatzadeh, A. Attarzadeh, Eur. Phys. J. Plus 138, 145 (2023)

    Article  Google Scholar 

  11. K.S. Teng, M. Brown, A. Kestle, P. Smowton, P. Blood, S. Pinches, P.A. Mawby, S.P. Wilks, Appl. Surf. Sci. 190, 284 (2002)

    Article  ADS  Google Scholar 

  12. K. Ohtani, Y. Ohno, F. Matsukura, H. Ohno, Phys. E 2, 200 (1998)

    Article  Google Scholar 

  13. K. Iga, H. Uenohara, F. Koyama, Electron. Lett. 22, 1008 (1986)

    Article  ADS  Google Scholar 

  14. K. Kishino, A. Kikuchi, Y. Kaneko, I. Nomura, Appl. Phys. Lett. 58, 1822 (1991)

    Article  ADS  Google Scholar 

  15. S.K. Sahu, S. Ipsita, P.K. Mahapatra, D.K. Mishra, J. Magn. Magn. Mater. 580, 170870 (2023)

    Article  Google Scholar 

  16. E.N.M. Cirillo, M. Colangeli, L. Rondoni, J. Stat. Phys. 176, 692 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  17. M. Karimi, K. Abedi, M. Zavvari, Infrared Phys. Technol. 62, 81 (2014)

    Article  ADS  Google Scholar 

  18. S. Chen, Y. Li, W. Tian, M. Zhang, S. Li, Z. Wu, Y. Fang, J. Dai, C. Chen, Appl. Phys. A 118, 1357 (2015)

    Article  ADS  Google Scholar 

  19. J.A. Osorio, D. Caicedo-Paredes, J.A. Vinasco, A.L. Morales, A. Radu, R.L. Restrepo, J.C. Martínez-Orozco, A. Tiutiunnyk, D. Laroze, N.N. Hieu, H.V. Phuc, M.E. Mora-Ramos, C.A. Duque, Sci. Rep. 10, 8961 (2020)

    Article  ADS  Google Scholar 

  20. E. Kasapoglu, S. Sakiroglu, H. Sari, I. Sӧkmen, C.A. Duque, Heliyon 5, e02022 (2019)

    Article  Google Scholar 

  21. E. Kasapoglu, U. Yesilgul, F. Ungan, I. Sökmen, H. Sari, Opt. Mater. 64, 82 (2017)

    Article  ADS  Google Scholar 

  22. S. Durak, S. Sakiroglu, Phys. B 650, 414575 (2023)

    Article  Google Scholar 

  23. A. Al-Naghmaish, H. Dakhlaoui, T. Ghrib, B.M. Wong, Phys. B Condens. Matter 635, 413838 (2022)

    Article  Google Scholar 

  24. M.K. Bahar, P. Baser, Phys. B 665, 415042 (2023)

    Article  Google Scholar 

  25. T.A. Sargsian, P.A. Mantashyan, D.B. Hayrapetyan, Nano-Struct. Nano-Objects 33, 100936 (2023)

    Article  Google Scholar 

  26. B. Dwir, D. Kaufman, Y. Berk, A. Rudra, A. Palevski, E. Kapon, Phys. B 259–261, 1025 (1999)

    Article  ADS  Google Scholar 

  27. E. Ramya, D. Kushavah, J. Mohapatra, D. Narayano-Rao, D. Xiang, Results Opt. 13, 100560 (2023)

    Article  Google Scholar 

  28. M.Y. Vinnichenko, I.S. Makhov, V. Yu Panevin, L.E. Vorobjev, S.V. Sorokin, I.V. Sedova, D.A. Firsov, Phys. E 124, 114301 (2020)

    Article  Google Scholar 

  29. C.A. Duque, M.E. Mora-Ramos, E. Kasapoglu, H. Sari, I. Sökmen, Eur. Phys. J. B. 81, 441 (2011)

    Article  ADS  Google Scholar 

  30. A. Salman Durmuslar, A. Turkoglu, M.E. Mora-Ramos, F. Ungan, Indian J. Phys. 96, 3485 (2022)

    Article  ADS  Google Scholar 

  31. E.B. Al, F. Ungan, U. Yesilgul, E. Kasapoglu, H. Sari, I. Sökmen, Int. J. Mod. Phys. B 30, 1650139 (2016)

    Article  ADS  Google Scholar 

  32. H. Yıldırım, Phys. Lett. A 383, 1324 (2019)

    Article  ADS  Google Scholar 

  33. U. Yesilgul, F. Ungan, E.B. Al, E. Kasapoglu, H. Sari, I. Sökmen, Opt. Quantum Electron. 48, 560 (2016)

    Article  Google Scholar 

  34. C.O. Edet, E.B. Al, F. Ungan, N. Ali, N. Rusli, S.A. Aljunid, R. Endut, M. Asjad, Nanomaterials 12, 2741 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

The current study was partially supported by Ahvaz Branch of Islamic Azad University and Sivas Cumhuriyet University, and the authors would like to thank the Research Council for their generous support of this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors equally contributed to the theoretical analysis, numerical studies, results interpretation, and writing the manuscript.

Corresponding author

Correspondence to Azadeh Haghighatzadeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haghighatzadeh, A., Attarzadeh, A., Salman Durmuslar, A. et al. Modeling of electronic spectra and optical responses of a semiconductor AlGaAs/GaAs quantum well with three-step barriers: the role of external perturbations and impurity. Eur. Phys. J. Plus 139, 353 (2024). https://doi.org/10.1140/epjp/s13360-024-05165-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05165-4

Navigation