Skip to main content
Log in

Charged anisotropic compact stars in Ricci-inverse gravity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The main objective of this work is to use the Karmarkar condition to investigate the charged anisotropic characteristics of compact stars in the recently proposed modified Ricci-inverse gravity. For this purpose, we derive the relativistic anisotropic static spherically symmetric solutions with specific Adler model for the \(g_{tt}\) metric potential. To determine the exterior geometry, we use the Bardeen model and carry out various physical tests to determine whether the Ricci-inverse gravity model is physically feasible, and to further investigate for energy density, pressure components, mass–radius relations, energy and equilibrium conditions. The success of Ricci-inverse gravity model for charged anisotropic compact stars is also discussed in our study. It is concluded that the existence of charged anisotropic compact stars is possible with our proposed \(f(\mathcal {R},\mathcal {A})\) gravity model. However, our chosen \(f(\mathcal {R},\mathcal {A})\) gravity model is not supporting massive stars. The exact limitations are not debated in this work; however, the stars with mass \(M= 1.2M_{\bigodot }\) and radii (\(R=9\), 9.10, 9.20, 9.30) are acceptable for our chosen model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

The authors declare that the data supporting the findings of this study are available within the article.

References

  1. D. Wang et al., Observational constraints on a logarithmic scalar field dark energy model and black hole mass evolution in the Universe. Eur. Phys. J. C 83, 670 (2023)

    Article  ADS  Google Scholar 

  2. S. Capozziello et al., Hydrostatic equilibrium and stellar structure in \(f (R)\) gravity. Phys. Rev. D 83(6), 064004 (2011)

    Article  ADS  Google Scholar 

  3. M.F. Shamir, A. Malik, Bardeen Compact Stars in Modified \(f (R)\) gravity. Chin. J. Phys. 69, 312–321 (2021)

    Article  MathSciNet  Google Scholar 

  4. S.A. Mardan et al., Spherically Symmetric Generating Solutions in \(f(R)\) Theory. Eur. Phys. J. Plus 138, 782 (2023)

    Article  Google Scholar 

  5. A. Malik et al., Traversable Wormhole solutions in \(f(R)\) theories of Gravity Via karmarkar condition. Chin. Phys. C 46(9), 095104 (2022)

    Article  ADS  Google Scholar 

  6. S. Nojiri, S.D. Odintsov, Modified \(f (R)\) gravity consistent with realistic cosmology: from a matter dominated epoch to a dark energy universe. Phys. Rev. D 74(8), 086005 (2006)

    Article  ADS  Google Scholar 

  7. A. Malik et al., A comprehensive discussion for the identification of cracking points in \(f(R)\) theories of gravity. Eur. Phys. J. C 83, 765 (2023)

    Article  ADS  Google Scholar 

  8. A. Malik et al., Investigation of traversable wormhole solutions in modified \(f(R)\) gravity with scalar potential. Eur. Phys. J. C 83, 522 (2023)

    Article  ADS  Google Scholar 

  9. T. Naz et al., Evolving embedded traversable Wormholes in \(f(R, G)\) Gravity: a comparative study. Phys. Dark Univ. 42, 101301 (2023)

    Article  Google Scholar 

  10. S. Nojiri, S.D. Odintsov, Modified Gauss-Bonnet theory as gravitational alternative for dark energy. Phys. Lett. B 631(1–2), 1–6 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  11. A. Malik et al., Bardeen compact stars in modified \(f (G)\) gravity. Can. J. Phys. 100(10), 452–462 (2022)

    Article  ADS  Google Scholar 

  12. Z. Yousaf et al., Bouncing cosmology with 4D-EGB gravity. Int. J. Theor. Phys. 62, 155 (2023)

    Article  MathSciNet  Google Scholar 

  13. Z. Yousaf et al., Stability of anisotropy pressure in self-gravitational systems in \(f (G)\) gravity. Axioms 12(3), 257 (2023)

    Article  Google Scholar 

  14. T. Harko et al., f (R, T) gravity. Phys. Rev. D 84(2), 024020 (2011)

    Article  ADS  Google Scholar 

  15. M.F. Shamir et al., Relativistic Krori-Barua Compact Stars in \(f(R, T)\) Gravity. Fortschr. Phys. 70(12), 2200134 (2022)

    Article  MathSciNet  Google Scholar 

  16. A. Malik et al., A comprehensive discussion for the identification of cracking points in \(f(R, T)\) theory of gravity. Eur. Phys. J. C 83, 845 (2023)

    Article  ADS  Google Scholar 

  17. Z. Asghar et al., Study of embedded class-I fluid spheres in \(f (R, T)\) gravity with Karmarkar condition. Chin. J. Phys. 83, 427–437 (2023)

    Article  MathSciNet  Google Scholar 

  18. A. Malik et al., Krori-Barua Bardeen compact stars in \(f(R, T)\) gravity. New Astron. 104, 102071 (2023)

    Article  Google Scholar 

  19. P. Bhar et al., Physical characteristics and maximum allowable mass of hybrid star in the context of \(f(Q)\) gravity. Eur. Phys. J. C 83, 646 (2023)

    Article  ADS  Google Scholar 

  20. L. Amendola et al., Ricci-inverse gravity: a novel alternative gravity, its flaws, and how to cure them. Phys. Lett. B 811, 135923 (2020)

    Article  MathSciNet  Google Scholar 

  21. Z. Asghar et al., Comprehensive analysis of relativistic embedded class-i exponential compact spheres in \(f(R, \phi )\) gravity via karmarkar condition. Commun. Theor. Phys. 75, 105401 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  22. A. Malik, Analysis of charged compact stars in modified \(f (R, \phi )\) theory of gravity. New Astron. 93, 101765 (2022)

    Article  Google Scholar 

  23. M.F. Shamir et al., Non-commutative wormhole solutions in modified \(f (R, \phi , X)\) gravity. Chin. J. Phys. 73, 634–648 (2021)

    Article  Google Scholar 

  24. M.F. Shamir et al., Wormhole solutions in modified \(f (R, \phi , X)\) gravity. Int. J. Mod. Phys. A 36, 2150021 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  25. M.F. Shamir et al., Dark \(f (R, \phi , X)\) Universe with Noether symmetry. Theor. Math. Phys. 205(3), 1692–1705 (2020)

    Article  MathSciNet  Google Scholar 

  26. S. Nojiri, S.D. Odintsov, Unified cosmic history in modified gravity: from \(F (R)\) theory to Lorentz non-invariant models. Phys. Rep. 505(2–4), 59–144 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  27. A.A. Starobinsky, Disappearing cosmological constant in \(f (R)\) gravity. JETP Lett. 86, 157–163 (2007)

    Article  ADS  Google Scholar 

  28. W. Hu, I. Sawicki, Models of \(f (R)\) cosmic acceleration that evade solar system tests. Phys. Rev. D 76(6), 064004 (2007)

    Article  ADS  Google Scholar 

  29. G. Cognola et al., Class of viable modified \(f (R)\) gravities describing inflation and the onset of accelerated expansion. Phys. Rev. D 77(4), 046009 (2008)

    Article  ADS  Google Scholar 

  30. K. R. Karmarkar, Gravitational metrics of spherical symmetry and class one. in Proceedings of the Indian academy of sciences-section A, Vol. 27. (Springer, 1948)

  31. D. Deb, et al., Anisotropic compact stars in \(f (T)\) gravity under Karmarkar condition. arXiv preprint arXiv:1811.11797 (2018)

  32. D. Deb et al., Anisotropic strange stars under simplest minimal matter-geometry coupling in the \(f (R, T)\) gravity. Phys. Rev. D 97(8), 084026 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  33. M. Zubair et al., Relativistic stellar model in \(f (R, T)\) gravity using karmarkar condition. New Astron. 88, 101610 (2021)

    Article  Google Scholar 

  34. T. Naz et al., Embedded class-I solution of compact stars in \(f (R)\) gravity with Karmarkar condition. Ann. Phys. 429, 168491 (2021)

    Article  MathSciNet  Google Scholar 

  35. M.F. Shamir, S. Zia, Physical attributes of anisotropic compact stars in \(f (R, G)\) gravity. Eur. Phys. J. C 77, 1–12 (2017)

    Google Scholar 

  36. S. Capozziello et al., Cosmography in \(f (T)\) gravity. Phys. Rev. D 84(4), 043527 (2011)

    Article  ADS  Google Scholar 

  37. S. Capozziello, D.S. Gomez, Scalar-tensor representation of \(f (R)\) gravity and Birkhoff’s theorem. Ann. Phys. 524(5), 279–285 (2012)

    Article  MathSciNet  Google Scholar 

  38. S. Capozziello, M.D. Laurentis, The dark matter problem from \(f (R)\) gravity viewpoint. Ann. Phys. 524(9–10), 545–578 (2012)

    Article  Google Scholar 

  39. S. Capozziello et al., Noether symmetries in Gauss-Bonnet-teleparallel cosmology. Eur. Phys. J. C 76, 1–6 (2016)

    Article  Google Scholar 

  40. F. Rahaman et al., Strange stars in Krori–Barua space-time. Eur. Phys. J. C 72, 1–9 (2012)

    Article  Google Scholar 

  41. M. Ilyas, Charged compact stars in \(f (G)\) gravity. Eur. Phys. J. C 78(9), 757 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  42. P. Rej et al., Charged compact star in \(f (R, T)\) gravity in Tolman–Kuchowicz spacetime. Eur. Phys. J. C 81(4), 316 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  43. P. Bhar, P. Rej, Charged strange star in \(f (R, T)\) gravity with linear equation of state. Astrophys. Space Sci. 366(4), 35 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  44. M.F. Shamir et al., Charged anisotropic Finch–Skea–Bardeen spheres in \(f (R)\) gravity with Karmarkar condition. Eur. Phys. J. Plus 136(1), 1–24 (2021)

    Article  Google Scholar 

  45. S.M. Carroll et al., Cosmology of generalized modified gravity models. Phys. Rev. D 71(6), 063513 (2005)

    Article  ADS  Google Scholar 

  46. G. Allemandi et al., Accelerated cosmological models in Ricci squared gravity. Phys. Rev. D 70(10), 103503 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  47. B. Li et al., Cosmology of Ricci-tensor-squared gravity in the Palatini variational approach. Phys. Rev. D 76(10), 104047 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  48. S. Capozziello, M.D. Laurentis, Extended theories of gravity. Phys. Rep. 509(4–5), 167–321 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  49. R.J. Adler, A fluid sphere in general relativity. J. Math. Phys. 15(6), 727–729 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  50. P. Bhar et al., A charged anisotropic well-behaved Adler–Finch–Skea solution satisfying Karmarkar condition. Int. J. Modern Phys. D 26(08), 1750078 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  51. M.R. Finch, J.E.F. Skea, A realistic stellar model based on an ansatz of Duorah and Ray. Class. Quantum Gravity 6(4), 467 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  52. J. M. Bardeen, Non-singular general-relativistic gravitational collapse, in Proceedings of GR-5, Georgia, U.S.S.R., p. 174 (1968)

  53. E. Ayon-Beato, A. Garcia, The Bardeen model as a nonlinear magnetic monopole. Phys. Lett. B 493(1–2), 149–152 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  54. C. Moreno, O. Sarbach, Stability properties of black holes in self-gravitating nonlinear electrodynamics. Phys. Rev. D 67(2), 024028 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  55. S.W. Hawking, G.F.R. Ellis, The large scale structure of space-time (Cambridge University Press, Cambridge, 2023)

    Book  Google Scholar 

  56. M.F. Shamir, G. Mustafa, Charged anisotropic Bardeen spheres admitting conformal motion. Ann. Phys. 418, 168184 (2020)

    Article  MathSciNet  Google Scholar 

  57. F. De Felice et al., Relativistic charged spheres. Mon. Not. R. Astron. Soc. 277(1), L17–L19 (1995)

    ADS  Google Scholar 

  58. C.G. Bohmer, T. Harko, Bounds on the basic physical parameters for anisotropic compact general relativistic objects. Class. Quantum Gravity 23(22), 6479 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  59. A. Malik et al., Singularity-free anisotropic strange quintessence Stars in \(f(R, \phi )\) theory of gravity. Eur. Phys. J. Plus 138, 418 (2023)

    Article  Google Scholar 

  60. A. Malik et al., Embedding procedure and wormhole solutions in Rastall gravity utilizing the class I approach. Int. J. Geom. Methods Mod. Phys. 20, 2350145 (2023)

    Article  MathSciNet  Google Scholar 

  61. A. Malik et al., Analysis of charged compact stars in \(f(R, T)\) gravity using Bardeen geometry. Int. J. Geom. Methods Mod. Phys. 20(4), 2350061 (2023)

    Article  MathSciNet  Google Scholar 

  62. R.C. Tolman, Static solutions of Einstein’s field equations for spheres of fluid. Phys. Rev. 55(4), 364 (1939)

    Article  ADS  Google Scholar 

  63. J.R. Oppenheimer, G.M. Volkoff, On massive neutron cores. Phys. Rev. 55(4), 374 (1939)

    Article  ADS  Google Scholar 

  64. L. Herrera, Cracking of self-gravitating compact objects. Phys. Lett. A 165(3), 206–210 (1992)

    Article  ADS  Google Scholar 

  65. R. Chan et al., Dynamical instability for radiating anisotropic collapse. Mon. Not. R. Astron. Soc. 265(3), 533–544 (1993)

    Article  ADS  Google Scholar 

  66. A. Di Prisco et al., Cracking of homogeneous self-gravitating compact objects induced by fluctuations of local anisotropy. Gen. Relativ. Gravit. 29(10), 1239–1256 (1997)

    Article  ADS  Google Scholar 

  67. L. Herrera, Cracking of self-gravitating compact objects. Phys. Lett. A 165(3), 206–210 (1992)

    Article  ADS  Google Scholar 

  68. H. Abreu et al., Sound speeds, cracking and the stability of self-gravitating anisotropic compact objects. Class. Quantum Gravity 24(18), 4631 (2007)

    Article  ADS  Google Scholar 

  69. M.K. Mak, T. Harko, Anisotropic stars in general relativity. Proc. R. Soc. Lond. Ser. Math. Phys. Eng. Sci. 459, 393–408 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  70. C.G. Bohmer, T. Harko, Bounds on the basic physical parameters for anisotropic compact general relativistic objects. Class. Quantum Gravity 23(22), 6479 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  71. R. Bowers et al., Anisotropic spheres in general relativity. Astrophys. J. 188, 657 (1974)

    Article  ADS  Google Scholar 

  72. B.V. Ivanov, Static charged perfect fluid spheres in general relativity. Phys. Rev. D 65(10), 104001 (2002)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

Adnan Malik acknowledges the Grant No. YS304023912 to support his Postdoctoral Fellowship at Zhejiang Normal University, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adnan Malik.

Appendix

Appendix

$$\begin{aligned} \psi _{1}= \,& {} -\frac{e^{-\lambda }}{2}\bigg (2\nu ''+\frac{2\nu '}{r}+\nu {'}^{2}-\nu '\lambda '-\frac{2\lambda '}{r}\bigg )+\frac{2}{r^{2}}\bigg (1-e^{-\lambda }+re^{-\lambda }\bigg (-\frac{\nu '}{2}+\frac{\lambda '}{2}\bigg )\bigg ).\\ \psi _{2}=\, & {} \frac{e^{-(\nu +\lambda )}}{2}\bigg (\nu ''+\frac{2\nu '}{r}+\frac{\nu {'}^{2}}{2}-\frac{\nu '\lambda '}{2}\bigg ). \\ \psi _{3}= \,& {} \frac{e^{-2\lambda }}{2}\bigg (-\nu ''-\frac{\nu {'}^{2}}{2}+\frac{\nu '\lambda '}{2}+\frac{2\lambda '}{r}\bigg ). \\ \psi _{4}=\,& {} \frac{1}{r^{4}}\bigg (1-e^{-\lambda }+re^{-\lambda }\bigg (-\frac{\nu '}{2}+\frac{\lambda '}{2}\bigg )\bigg ). \\ \psi _{5}=\, & {} 4re^{\lambda }\bigg [\bigg (\frac{-1}{2r\nu ''+4\nu '+r\nu {'}^{2}-r\nu '\lambda '}\bigg )+\bigg (\frac{1}{-2r\nu ''+4\lambda '-r\nu {'}^{2}+r\nu '\lambda '}\bigg )\bigg ]+\frac{4r^{2}}{2-2e^{-\lambda }+re^{-\lambda }(\lambda '-\nu ')}.\\ \psi _{6}=\, & {} \frac{4re^{\lambda -\nu }}{2r\nu ''+r\nu {'}^{2}+4\nu '-r\nu '\lambda '}. \\ \psi _{7}= & {} \frac{4r}{-2r\nu ''-r\nu {'}^{2}+r\nu '\lambda '+4\lambda '}. \\ \psi _{8}= \,& {} \frac{2}{2-2e^{-\lambda }+re^{-\lambda }(\lambda '-\nu ')}. \\ \psi _{9}=\, & {} \bigg (\frac{4re^{\lambda -\nu }}{2r\nu ''+r\nu {'}^{2}+4\nu '-r\nu '\lambda '}\bigg )\bigg (\frac{-4re^{\lambda }}{2r\nu ''+r\nu {'}^{2}+4\nu '-r\nu '\lambda '}\bigg ).\\ \psi _{10}=\, & {} \bigg (\frac{4r}{-2r\nu ''-r\nu {'}^{2}+r\nu '\lambda '+4\lambda '}\bigg )\bigg (\frac{4re^{\lambda }}{-2r\nu ''-r\nu {'}^{2}+r\nu '\lambda '+4\lambda '}\bigg ). \\ \psi _{11}= \,& {} \bigg (\frac{2}{2-2e^{-\lambda }+re^{-\lambda }(\lambda '-\nu ')}\bigg )\bigg (\frac{2r^{2}}{2-2e^{-\lambda }+re^{-\lambda }(\lambda '-\nu ')}\bigg ). \\ \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malik, A., Arif, A. & Shamir, M.F. Charged anisotropic compact stars in Ricci-inverse gravity. Eur. Phys. J. Plus 139, 67 (2024). https://doi.org/10.1140/epjp/s13360-024-04870-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-04870-4

Navigation