Skip to main content
Log in

Dynamics of protein–lipid interactions in a three-variable reaction–diffusion model of myristoyl-electrostatic cycle in living cell

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Protein–lipid interactions dynamics through a three-variable reaction–diffusion model in the living cell are explored. It is proven that the dynamics of such a system is governed by a two-dimensional cubic complex Ginzburg–Landau equation. Linear stability analysis is carried out through modulational instability. It appears that both rate constant of lipid association of unphosphorylated proteins and the diffusion coefficient of proteins on membrane impact the zone of instability and the amplitude of the growth rate. The \((G'/G)\)-expansion method is used to construct analytical spiral and periodic solutions. These structures are robust and propagate for large values of the diffusion coefficient of proteins on membrane during protein–lipid interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability Statement

No Data associated in the manuscript.

References

  1. A.W. Smith, Biochimica et Biophysica Acta 1818, 172–177 (2012)

    Article  Google Scholar 

  2. J.C. Castillo-Sanchez, A. Cruz, J. Pérez-Gil, Arch. Biochem. Biophys. 703, 108850 (2021)

    Article  Google Scholar 

  3. M.R. MacRae, D. Puvanendran, M.A.B. Haase, N. Coudray, L. Kolich, C. Lam, M. Baek, G. Bhabha, D.C. Ekiert, J. Biol. Chem. 299, 104744 (2023)

    Article  Google Scholar 

  4. P.V. Escriba, J.M. Gonzalez-Ros, F.M. Goni, P.K.J. Kinnunen, L. Vigh, L. Sanchez-Magraner et al., J. Cell. Mol. Med. 12, 829 (2008)

    Article  Google Scholar 

  5. W. Dowhan, M. Bogdanov, Annu. Rev. Biochem. 78, 515 (2009)

    Article  Google Scholar 

  6. A.G. Lee, Biochem. Soc. Trans. 39, 761–766 (2011)

    Article  Google Scholar 

  7. Gu. Ruo-Xu, Bert L. de Groot, Nat. Commun. 11, 2162 (2020)

    Article  ADS  Google Scholar 

  8. S.L. Veatch, S.L. Keller, Phys. Rev. Lett. 89, 268101 (2002)

    Article  ADS  Google Scholar 

  9. H.M. McConnell, M. Vrljic, Annu. Rev. Biophys. Biomol. Struct. 32, 469 (2003)

    Article  Google Scholar 

  10. K. John, M. Bär, PRL 95, 198101 (2005)

    Article  ADS  Google Scholar 

  11. T.S. Braun, J. Stehle, S. Kacprzak, P. Carl, P. Höfer, V. Subramaniam, M. Drescher, J. Phys. Chem. Lett. 12, 2471–2475 (2021)

    Article  Google Scholar 

  12. P.J. Blackshear, J. Biol. Chem. 268, 1501 (1993)

    Article  Google Scholar 

  13. S. McLaughlin et al., Annu. Rev. Biophys. Biomol. Struct. 31, 151 (2002)

    Article  Google Scholar 

  14. A.W. Smith, Biochimica et Biophysica Acta 1818, 172–177 (2012)

    Article  Google Scholar 

  15. L. Jiang, Z. Xiong, Y. Song, Y. Lu, Y. Chen, J.S. Schultz, J. Li, J. Liao, Sci. Rep. 9, 2050 (2019)

    Article  ADS  Google Scholar 

  16. B.I. Sejdiu, D.P. Tieleman, Biophys. J. 118, 1887–1900 (2020)

    Article  ADS  Google Scholar 

  17. J.C. Castillo-Sanchez, A. Cruz, J. Pérez-Gil, Arch. Biochem. Biophys. 703, 108850 (2021)

    Article  Google Scholar 

  18. R.Y. Ondoua, C.B. Tabi, H.P. Ekobena Fouda, A. Mohamadou, T.C. Kofané, Eur. Phys. J. B 85, 318 (2012)

    Article  ADS  Google Scholar 

  19. C.B. Tabi, J.C. Mimshe, H.P. Ekobena Fouda, A. Mohamadou, T.C. Kofané, Eur. Phys. J. B 86, 374 (2013)

    Article  ADS  Google Scholar 

  20. J.C. Mimshe Fewu, C.B. Tabi, H. Edongue, H.P. Ekobena Fouda, A. Mohamadou, T.C. Kofane, Phys. Scr. 87, 025801 (2013)

    Article  ADS  Google Scholar 

  21. C.B. Tabi, R.Y. Ondoua, H.P. Ekobena Fouda, T.C. Kofané, Phys. Lett. A 380, 2374 (2016)

    Article  ADS  Google Scholar 

  22. R.Y. Ondoua, J.C. Mimshe Fewu, D. Belobo Belobo, C.B. Tabi, H.P. Ekobena Fouda, Eur. Phys. J. Plus 136, 274 (2021)

    Article  Google Scholar 

  23. P. Otlaadisa, C.B. Tabi, T.C. Kofané, Phys. Rev. E 103, 052206 (2021)

    Article  ADS  Google Scholar 

  24. D. Zanga, S. Fewo, C.B. Tabi, T.C. Kofané, Commun. Nonlinear Sci. Numer. Simul. 80, 104993 (2020)

    Article  MathSciNet  Google Scholar 

  25. C.B. Tabi, S. Veni, T.C. Kofané, Phys. Lett. A 442, 128192 (2022)

    Article  Google Scholar 

  26. K. Ndebele, C.B. Tabi, T.C. Kofané, J. Opt. Soc. Am. B 37, A214 (2020)

    Article  Google Scholar 

  27. K. Ndebele, C.B. Tabi, C. Tiofack Latchio, T.C. Kofané, Phys. Rev. E 104, 044208 (2021)

    Article  ADS  Google Scholar 

  28. D. Zanga, S. Fewo, C.B. Tabi, T.C. Kofané, Phys. Rev. A 105, 023502 (2022)

    Article  ADS  Google Scholar 

  29. C. Panguetna, C.B. Tabi, T.C. Kofané, Phys. Plasmas 24, 092114 (2017)

    Article  ADS  Google Scholar 

  30. C. Panguetna, C.B. Tabi, T.C. Kofané, Commun. Nonlinear Sci. Numer. Simul. 55, 326 (2018)

    Article  ADS  Google Scholar 

  31. C. Bansi Kamdem, C.B. Tabi, A. Mohamadou, Chaos Solit Fract 109, 170 (2018)

    Article  ADS  Google Scholar 

  32. C.B. Tabi, A.S. Etémé, A. Mohamadou, T.C. Kofané, Waves Rand Comp Media 31, 1028 (2021)

    Article  ADS  Google Scholar 

  33. Kuramoto Yoshiki, Chem. Oscil. (Springer-verlag, Berlin, Waves and Turbulence., 1984)

    Google Scholar 

  34. A.S. Eteme, C.B. Tabi, A. Mohamadou, Chaos Solitons Fractals 104, 813–826 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  35. N.R. Zaoro, C.B. Tabi, A.S. Eteme, T.C. Kofané, Phys. Lett. A 384, 126133 (2020)

    Article  Google Scholar 

  36. P.G. Legoya, A.S. Etémé, C.B. Tabi, A. Mohamadou, T.C. Kofané, Chaos Solitons Fractals 164, 112599 (2022)

    Article  Google Scholar 

  37. Chenceline Fouedji, Armand Sylvin Etémé, Conrad Bertrand Tabi and Henri Paul Ekobena Fouda. Eur. Phys. J. Plus 138, 987 (2023)

    Article  Google Scholar 

  38. M. J. Ablowitz, P. A. Clarkson, Cambridge University Press (1991)

  39. C.T. Yan, Phys. Lett. A 224, 77 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  40. C.B. Tabi, T.G. Motsumi, C.D.K. Bansi, A. Mohamadou, Commun. Nonlinear Sci. Numer. Simul. 49, 1 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  41. M.L. Wang, Y.B. Zhou, Phys. Lett. A 318, 84 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  42. R. Hirota, Cambridge University Press (2004)

  43. W. Liu, Y. Weitian, C. Yang, M. Liu, Y. Zhang, M. Lei, Nonlinear Dyn. 89, 2933–2939 (2017)

    Article  Google Scholar 

  44. W. Domgno Kuipou, A. Mohamadou, E. Kengne (2021) Chaos Solitons Fractals, 152:111321

  45. M.L. Wang, X.Z. Li, J.L. Zhang, Phys. Lett. A 372, 417 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  46. G.R. Kol, C.B. Tabi, Phys. Scr. 83, 045803 (2011)

    Article  ADS  Google Scholar 

  47. C.B. Tabi, A.S. Eteme, A. Mohamadou, T.C. Kofané, Waves Rand Comp Media 31, 1028 (2019)

    Article  ADS  Google Scholar 

  48. A. Atri, J. Amundson, D. Clapham et al., Biophys. J. 65, 1727 (1993)

    Article  Google Scholar 

  49. S. Girard, A. Luckhoff, J. Lechleiter et al., Biophys. J. 61, 509 (1992)

    Article  Google Scholar 

  50. A.R. Battle, P. Ridone, N. Bavi, Y. Nakayama, Y.A. Nikolaev, B. Martina, Biochimica et Biophysica Acta 1848, 1744–1756 (2015)

    Article  Google Scholar 

  51. Theresa S. Braun, Juliane Stehle, Sylwia Kacprzak, Patrick Carl, Peter Höfer, Vinod Subramaniam, Malte Drescher, J. Phys. Chem. Lett. 12, 2471–2475 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude the Professor Conrad Bertrand Tabi from Botswana International University of Science and Technology (BIUST), Botswana, for his significant contribution during the development of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Y. Ondoua.

Appendices

Appendix A: Calculation details of generating the 2D-CGL equation Eq. (4)

Equation (1) becomes:

$$\begin{aligned} \frac{\partial m}{\partial t}&=k_{ad}c(1-m)-k_{de}m-k_{ki}(1-m)\frac{m}{k_{m}+m}+D_{\textrm{m}}\nabla ^2 m\nonumber \\ \frac{\partial c}{\partial t}&=k_{de}m-k_{ad}c(1-m)+k_{ph}p+D_{\textrm{c}}\nabla ^2c,\nonumber \\ \frac{\partial p}{\partial t}&=k_{ki}(1-m)\frac{m}{k_{m}+m}-k_{ph}p+D_{\textrm{c}}\nabla ^2 p, \end{aligned}$$
(A1)

We linearize the set of equations (A1) and obtain:

$$\begin{aligned} (1+\alpha _0m){\dot{m}}&=\alpha _1m+\alpha _2c+\alpha _3m^2 +\alpha _4mc+\alpha _{5}m^2c+D_{\textrm{m}}\nabla ^2 m+\alpha _6m\nabla ^2 m,\nonumber \\ {\dot{c}}&=-\alpha _2c+\beta _1m+\beta _2p+\alpha _2mc+D_{\textrm{c}}\nabla ^2c,\nonumber \\ (1+\alpha _0m){\dot{p}}&=-\beta _2p+\gamma _{1}m-\gamma _{1}m^2+ \gamma _{2}mp+D_{\textrm{c}}\nabla ^2 p+\gamma _{3}m\nabla ^2p, \end{aligned}$$
(A2)

where \(\alpha _{0}=\frac{1}{k_{m}}\); \(\alpha _{1}=-(k_{de}+\frac{k_{ki}}{k_m})\); \(\alpha _{2}=k_{ad}\); \(\alpha _{3}=\frac{k_{ki}-k_{de}}{k_{m}}\); \(\alpha _{4}=k_{ad}(-1+\frac{1}{k_{m}})\); \(\alpha _5=-\frac{k_{ad}}{k_m}\); \(\alpha _6=\frac{D_m}{k_m}\); \(\beta _{1}=k_{de}\); \(\beta _{2}=k_{ph}\); \(\gamma _{1}=\frac{k_{ki}}{k_m}\); \(\gamma _{2}=-\frac{k_{ph}}{k_m}\); \(\gamma _{3}=\frac{D_c}{k_m}\). We derive the first equation of (A2) with respect to t, with the used of the second equation of (A2) and obtain

$$\begin{aligned}&(1+a_0m)\ddot{m}+(a_1+a_2m){\dot{m}}^2+(b_0+b_1m+b_2m^2) {\dot{m}}+d_3m^3+d_2m^2+\Omega _{0}^2m+d_1p+d_0mp+d_4m^2p=\nonumber \\&(e_0+e_1m+e_2m^2)\nabla ^2m+D_c(1+h_1m+h_2m^2)\nabla ^2{\dot{m}} +(g_0+g_1m){\dot{m}}\nabla ^2m+D_m(1+h_3m){\dot{\nabla }}^2m\nonumber \\&-D_cD_m(1+h_1m+h_2m^2)\nabla ^2(\nabla ^2m), \end{aligned}$$
(A3)

where the expressions of \(a_i\), \(b_i\), \(d_i\), \(e_i\),\(g_i\), \(h_i\) and \(\Omega _i\),\(i=0,1,2,3,4\) are given by:

$$\begin{aligned} \begin{aligned} \left\{ \begin{array}{cl} &{} a_0=\alpha _0; a_1=\alpha _0-\frac{\alpha _4}{\alpha _2} ;a_2=-\frac{2\alpha _5}{\alpha _2}; \\ &{}b_0=-\alpha _1+\alpha _2;b_1=-2\alpha _3+\alpha _4(1+\frac{\alpha _1}{\alpha _2}) ;b_2=\alpha _5-\alpha _4+\frac{2\alpha _1\alpha _5}{\alpha _2}\\ &{} d_0=-\alpha _4\beta _2; d_1=-\alpha _2\beta _2; d_2=-\alpha _4(\alpha _1+\beta _1)+\alpha _1\alpha _2; { d_3=\alpha _1(\alpha _2-\alpha _5)-\alpha _5\beta _1}; d_4=-\alpha _5\beta _2\\ &{}e_0=\alpha _2D_m-\alpha _{1}D_c; e_1=-(D_m(\alpha _2-\alpha _4)+\frac{D_c\alpha _1\alpha _4}{\alpha _2}) ; e_2=-(D_m(\alpha _4-\alpha _5)-\frac{D_c\alpha _1\alpha _5}{\alpha _2})\\ &{}g_0=\alpha _6-\frac{D_m\alpha _4}{\alpha _2}; g_1=-2\frac{D_m\alpha _5}{\alpha _2}\\ &{} h_1=\frac{\alpha _4}{\alpha _2}; h_2=\frac{\alpha _5}{\alpha _2}; h_3=\frac{\alpha _6}{D_m}\\ &{}\Omega _0^2=-\alpha _2(\alpha _1+\beta _1) \end{array}\right. \end{aligned} \end{aligned}$$

which depend on the parameters of the model. From the third equation of (A2) and Eq. (A3), we have

$$\begin{aligned} & (1+a_0m)\ddot{m}+(a_1+a_2m){\dot{m}}^2+(b_0+b_1m+b_2m^2){\dot{m}}+d_3m^3+d_2m^2+\Omega _{0}^2m+d_1p+d_0mp+d_4m^2p\nonumber \\ & \quad =(e_0+e_1m+e_2m^2)\nabla ^2m+D_c(1+h_1m+h_2m^2)\nabla ^2{\dot{m}}+(g_0+g_1m){\dot{m}}\nabla ^2m+D_m(1+h_3m){\dot{\nabla }}^2m\\ & \qquad -D_cD_m(1+h_1m+h_2m^2)\nabla ^2(\nabla ^2m),\nonumber \\ & \qquad (1+a_0m){\dot{p}}=-\beta _2p+\gamma _{1}m-\gamma _{1}m^2+ \gamma _{2}mp+D_{\textrm{c}}\nabla ^2 p+\gamma _{3}m\nabla ^2p. \end{aligned}$$
(A4)

Here, we have the real-valued conditions:

$$\begin{aligned}&m_{n}^{(-l)}=\left( m_{n}^{(l)}\right) ^{*} \nonumber \\&p_{n}^{(-l)}=\left( p_{n}^{(l)}\right) ^{*}. \end{aligned}$$
(A5)

The asterisk denoting complex conjugations. The insertion of Eq. (A5) into the difference-differential Eqs. (A4) at the different orders of \((\epsilon ^n, A^l\) \(n=1,2,3)\), we obtain:

order \((\epsilon ^1,A^0)\)

$$\begin{aligned}&\Omega _0^2m_{1}^{(0)}=0\Rightarrow m_{1}^{(0)}=0\nonumber \\&-\alpha _{11}m^{(0}_{1}+\alpha _9p_{1}^{(0)}=0\Rightarrow p_1^{(0)}=0. \end{aligned}$$
(A6)

order \((\epsilon ^1,A^1)\)

$$\begin{aligned}&(\Omega _0^2+e_0k^2-\omega ^2)m_{1}^{(1)}=0\Rightarrow m_{1}^{(1)}\ne 0 \Rightarrow \omega ^2-\Omega _0^2-e_0k^2=0\nonumber \\&(D_ck^2+\beta _{2}-i\omega )p^{(1)}_{1}+\gamma _1m_{1}^{(1)}=0\Rightarrow p_1^{(1)}=\left[ \frac{\gamma _1(D_ck^2+\beta _2)}{(D_ck^2+\beta _2)^2+\omega ^2} +i\frac{\gamma _1\omega }{(D_ck^2+\beta _2)^2+\omega ^2}\right] m_1^{(1)}. \end{aligned}$$
(A7)

and we consider \(m_1^{(1)}=\phi \)

$$\begin{aligned}&p_1^{(1)}=(A_1+iA_2)\phi \nonumber \\&A_1=\frac{\gamma _1(D_ck^2+\beta _2)}{(D_ck^2+\beta _2)^2+\omega ^2}, \qquad A_2=\frac{\gamma _1\omega }{(D_ck^2+\beta _2)^2+\omega ^2}; \end{aligned}$$
(A8)

order \((\epsilon ^2, A^0)\)

$$\begin{aligned}&m_0^{(2)}=-\frac{2}{\Omega _0^2}\left[ D_mD_ch_1k^4+(a_1-a_0)\omega ^2+ e_1k^2+d_2+d_0A_1+i(D_ch_1+D_mh_3)\omega k^2\right] \vert \phi \vert ^2=(B_1+iB_2)\vert \phi \vert ^2 \nonumber \\&p^{(2)}_0=\frac{1}{\beta _2}[\gamma _1B_1+2(-\gamma _3A_1k^2-a_0A_2\omega +\gamma _2A_1-\gamma _1)+i\gamma _1B_2]\vert \phi \vert ^2=(\Gamma _1+i\Gamma _2)\vert \phi \vert ^2. \end{aligned}$$
(A9)

with,

$$\begin{aligned} \begin{aligned}&B_1=-\frac{2}{\Omega _0^2}[D_mD_ch_1k^4+(a_1-a_0)\omega ^2+e_1k^2+d_2+d_0A_1]\\&B_2=-\frac{2}{\Omega _0^2}[(D_ch_1+D_mh_3)\omega k^2]\\&\Gamma _1=\frac{1}{\beta _2}[\gamma _1B_1-2(\gamma _3A_1k^2+a_0A_2\omega -\gamma _2A_1+\gamma _1)]\\&\Gamma _2=\frac{\gamma _1B_2}{\beta _2}.\\ \end{aligned} \end{aligned}$$

order \((\epsilon ^2, A^2)\)

$$\begin{aligned} m_2^{(2)}&=\frac{D_mD_ch_1k^4+e_1k^2-(a_0+a_1)\omega ^2+d_2+d_0A_1 +i[(D_ch_1+D_mh_3-g_0)\omega k^2-b_1\omega +d_0A_2]}{3\Omega _0^2}\phi ^2\nonumber \\&=(B_{12}+iB_{22})\phi ^2\nonumber \\ p_2^{(2)}&=\frac{-A_1\gamma _3k^2-a_0A_2\omega +A_1\gamma _2+\gamma _1B_{12} -\gamma _1+i(-A_2\gamma _3k^2+a_0A_1\omega +A_2\gamma _2+\gamma _1 B_{22})}{4D_ck^2+\beta _2-2i\omega }\phi ^2\nonumber \\&=(\Gamma _{12}+i\Gamma _{22})\phi ^2, \end{aligned}$$
(A10)

where

$$\begin{aligned} \begin{aligned}&B_{12}=\frac{D_mD_ch_1k^4+e_1k^2-(a_0+a_1)\omega ^2+d_2+d_0A_1}{3\Omega _0^2}, \qquad B_{22}=\frac{(D_ch_1+D_mh_3-g_0)\omega k^2-b_1\omega +d_0A_2}{3\Omega _0^2} \\&\Gamma _{12}=\frac{(4D_ck^2+\beta _2)(-A_1\gamma _3k^2-a_0A_2\omega +A_1\gamma _2+\gamma _1B_{12} -\gamma _1)-2\omega (-A_2\gamma _3k^2+a_0A_1\omega +A_2\gamma _2+\gamma _1 B_{22})}{(4D_ck^2+\beta _2)^2+4\omega ^2}\\&\Gamma _{22}=\frac{(4D_ck^2+\beta _2)(-A_2\gamma _3k^2+a_0A_1\omega +A_2\gamma _2+\gamma _1 B_{22})+2\omega (-A_1\gamma _3k^2-a_0A_2\omega +A_1\gamma _2+\gamma _1B_{12} -\gamma _1)}{(4D_ck^2+\beta _2)^2+4\omega ^2}. \end{aligned} \end{aligned}$$

Appendix B: Calculation details of implementation of \((G'/G)\)-expansion method to the two-dimensional cubic complex Ginzburg–Landau equation

Inserting solution Eq. (20) into Eq. (4) and separating the real and imaginary parts lead to

$$\begin{aligned}&\mu _0(P_1u_1^2+P_2v_1^2)FF''+\mu _0(P_1u_1^2+P_2v_1^2)(F')^2 +2(\omega _1+P_1u_1u_2+P_2v_1v_2)FF'+R_1F^2+2Q_2F^4=0,\nonumber \\&(P_1u_1^2+P_2v_1^2)F''-(P_1u_1^2+P_2v_1^2)F(H')^2-2(\omega _1 +P_1u_1u_2+P_2v_1v_2)FH'+2Q_1F^3\nonumber \\&-(R_2+2\omega _2+P_1u_2^2+P_2v_2^2)F=0. \end{aligned}$$
(B1)

We further set

$$\begin{aligned} H(X)=\mu _0\ln \vert F(X)\vert , \end{aligned}$$
(B2)

where \(\mu _0\) is another constant to be determined later. Substituting (B2) into (B1), one arrives to the system

$$\begin{aligned}&\mu _0(P_1u_1^2+P_2v_1^2)FF''+\mu _0(P_1u_1^2+P_2v_1^2)(F')^2+2(\omega _1+P_1u_1u_2+P_2v_1v_2)FF'+R_1F^2+2Q_2F^4=0,\nonumber \\&(P_1u_1^2+P_2v_1^2)FF''-\mu _0^2(P_1u_1^2+P_2v_1^2)(F')^2-2\mu _0(\omega _1+P_1u_1u_2+P_2v_1v_2)FF'+2Q_1F^4\nonumber \\&-(R_2+2\omega _2+P_1u_2^2+P_2v_2^2)F^2=0. \end{aligned}$$
(B3)

The factors in the trial solution Eq.(16) can be found by balancing the highest order derivative term \((F')^2\) and the highest nonlinear term \((F^4)\) appearing in (B3). In fact, the weight of the derivative is \(2(s+1)\) and that of the nonlinear term is 4s. Equating the two weights, i.e. \(2(s+1)=4s\) leads to the result \(s=1\), for which we get

$$\begin{aligned} F(X)=q_{-1}\left( \frac{G'(X)}{G(X)}\right) ^{-1}+q_0+q_{1}\left( \frac{G'(X)}{G(X)}\right) . \end{aligned}$$
(B4)

We substitute Eq. (B4) into Eqs. (B3) and, after eliminating the denominator and collecting all terms with the same order of \(\left( G'(X)/G(X)\right) \) together, the left-hand sides of Eqs. (B3) are converted into two polynomials in \(\left( G'(X)/G(X)\right) \). Setting the coefficients of these polynomials to zero, we derive a set of algebraic equations for \(u_1\), \(u_2\), \(v_1\), \(v_2\), \(\omega _1\), \(\omega _2\), \(\mu _0\), \(\Lambda \), \(\Upsilon \), \(q_0\), \(q_1\) and \(q_{-1}\). The resolution using the computer algebra software MAPLE leads to solutions given in Eq. (22).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mebara, E.R.A., Ondoua, R.Y. & Fouda, H.P.E. Dynamics of protein–lipid interactions in a three-variable reaction–diffusion model of myristoyl-electrostatic cycle in living cell. Eur. Phys. J. Plus 138, 1158 (2023). https://doi.org/10.1140/epjp/s13360-023-04792-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04792-7

Navigation