Skip to main content
Log in

Generalized Lerch polynomials: application in fractional model of CAR-T cells for T-cell leukemia

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Chimeric antigen receptor T-cell (CAR-T) therapy has emerged as a widely accepted approach in the management of blood malignancies, enabling specifically trained CAR-T cells to target cancerous cells. Encouraging outcomes have been observed in B-cell lymphoma patients who have exhibited complete responses to CAR-T cell therapy. Ongoing researches are exploring the therapeutic effects of CAR-T cells on various tumors and malignancies, including T cell leukemia. The aim of this study is to present an optimized method for solving the fractional model of CAR-T cell treatment for patients with T-cell leukemia by means of new basis functions, generalized Lerch polynomials (GLPs). The optimization method is performed through the Lagrange multipliers. To observe the correctness, efficiency, competence, and proficiency of the designed computing algorithm, an exhaustive analysis of different parameters, CPU times, and residual function optimal values are presented. Our results predicted a significant decrease in the count of leukemic T-cells after the first dose administration of CAR-T cells to T leukemia patients. Additionally, our mathematical analysis demonstrated that an optimized cure may occur after the second injection of CAR-T cells. These findings underscore the efficacy and potential of our optimized method using GLPs for solving the fractional model of CAR-T cell treatment in patients with T-cell leukemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. A. Aureli, B. Marziani, A. Venditti, T. Sconocchia, G. Sconocchia, Acute lymphoblastic Leukemia immunotherapy treatment: now, next, and beyond. Cancers 15(13), 3346 (2023). https://doi.org/10.3390/cancers15133346

    Article  Google Scholar 

  2. A. Gavralidis, A.M. Brunner, Novel therapies in the treatment of adult acute Lymphoblastic Leukemia. Curr. Hematol. Malig. Rep. 15(4), 294–304 (2020)

    Article  Google Scholar 

  3. D.J. DeAngelo, E. Jabbour, A. Advani, Recent advances in managing acute lymphoblastic Leukemia. Am. Soc. Clin. Oncol. Educ. Book 40, 330–342 (2020)

    Article  Google Scholar 

  4. N. Gokbuget, Treatment of older patients with acute lymphoblastic leukemia. Hematology Am. Soc. Hematol. Educ. Program 1, 573–579 (2016)

    Article  Google Scholar 

  5. C.H. Pui, Precision medicine in acute lymphoblastic leukemia. Front. Med. 14(6), 689–700 (2020)

    Article  Google Scholar 

  6. K. Sasaki, E. Jabbour, N.J. Short, N. Jain, F. Ravandi, C.H. Pui, H. Kantarjian, Acute lymphoblastic leukemia: a population-based study of outcome in the United States based on the surveillance, epidemiology, and end results (SEER) database, 1980–2017. Am. J. Hematol. 96(6), 650–658 (2021)

    Article  Google Scholar 

  7. B. Samra, E. Jabbour, F. Ravandi, H. Kantarjian, N.J. Short, Evolving therapy of adult acute lymphoblastic leukemia: state-of-the-art treatment and future directions. J. Hematol. Oncol. 13(1), 1–17 (2020)

    Article  Google Scholar 

  8. R.C. Sterner, R.M. Sterner, CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 11(4), 69 (2021). https://doi.org/10.1038/s41408-021-00459-7

    Article  MathSciNet  Google Scholar 

  9. X. Xu, S. Huang, X. Xiao, O. Sun, X. Liang, S. Chen, Z. Zhao, Z. Huo, S. Tu, Y. Li, Challenges and clinical strategies of CAR T-cell therapy for acute lymphoblastic leukemia: overview and developments. Front. Immunol. 11, 569117 (2020). https://doi.org/10.3389/fimmu.2020.569117

    Article  Google Scholar 

  10. T. Haslauer, R. Greil, N. Zaborsky, R. Geisberger, CAR T-cell therapy in hematological malignancies. Int. J. Mol. Sci. 22(16), 8996 (2021). https://doi.org/10.3390/ijms22168996

    Article  Google Scholar 

  11. P. Lu, Y. Liu, J. Yang, X. Zhang, X. Yang, H. Wang, L. Wang, Q. Wang, D. Jin, J. Li, X. Huang, Naturally selected CD7 CAR-T therapy without genetic manipulations for T-ALL/LBL: first-in-human phase 1 clinical trial. Blood 140(4), 321–334 (2020)

    Google Scholar 

  12. J. Pan, Y. Tan, G. Wang, B. Deng, Z. Ling et al., Donor-derived CD7 chimeric antigen receptor T cells for T-cell acute lymphoblastic leukemia: first-in-human, phase I trial. J. Clin. Oncol. 39(30), 3340–3351 (2021)

    Article  Google Scholar 

  13. Z. Avazzadeh, H. Hassani, P. Agarwal, S. Mehrabi, M.J. Ebadi, M.K. Hosseini Asl, Optimal study on fractional fascioliasis disease model based on generalized Fibonacci polynomials. Math. Methods Appl. Sci. 46(8), 9332–9350 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  14. Z. Avazzadeh, H. Hassani, P. Agarwal, S. Mehrabi, M.J. Ebadi, MSh. Dahaghin, An optimization method for studying fractional-order tuberculosis disease model via generalized Laguerre polynomials. Soft. Comput. (2023). https://doi.org/10.1007/s00500-023-08086-z

    Article  Google Scholar 

  15. Y. Nawaz, M.S. Arif, K. Abodayeh, A third-order two-stage numerical scheme for fractional Stokes problems: a comparative computational study. J. Comput. Nonlinear Dyn. 17(10), 101004 (2022). https://doi.org/10.1115/1.4054800

    Article  Google Scholar 

  16. M.S. Arif, K. Abodayeh, A. Ejaz, Stability analysis of fractional-order predator-prey system with consuming food resource. Axioms 12(1), 64 (2023). https://doi.org/10.3390/axioms12010064

    Article  Google Scholar 

  17. Y. Nawaz, M.S. Arif, W. Shatanawi, A new numerical scheme for time fractional diffusive Seair model with non-linear incidence rate: an application to computational biology. Fractal Fract. 6(2), 78 (2022). https://doi.org/10.3390/fractalfract6020078

    Article  Google Scholar 

  18. M.S. Arif, K. Abodayeh, Y. Nawaz, Numerical schemes for fractional energy balance model of climate change with diffusion effects. Emerging Sci. J. 7(3), 808–820 (2023). https://doi.org/10.28991/ESJ-2023-07-03-011

    Article  Google Scholar 

  19. Y. Nawaz, M.S. Arif, K. Abodayeh, M. Bibi, Finite difference schemes for time-dependent convection q-diffusion problem. AIMS Math. 7(9), 16407–16421 (2022). https://doi.org/10.3934/math.2022897

    Article  MathSciNet  Google Scholar 

  20. S.A. Pasha, Y. Nawaz, M.S. Arif, On the nonstandard finite difference method for reaction?Diffusion models. Chaos Solitons Fractals 166, 112929 (2023). https://doi.org/10.1016/j.chaos.2022.112929

    Article  MathSciNet  Google Scholar 

  21. P. Veeresha, H.M. Baskonus, D. Prakasha, W. Gao, G. Yel, Regarding new numerical solution of fractional Schistosomiasis disease arising in biological phenomena. Chaos, Solitons Fractals 133, 109661 (2020)

    Article  MathSciNet  Google Scholar 

  22. A.S.V.R. Kanth, S. Devi, A computational approach for numerical simulations of the fractal-fractional autoimmune disease model, Chaos. Solitons Fractals 165(2), 112829 (2022)

    Article  Google Scholar 

  23. S.-W. Yao, S. Rashid, M. Inc, E.E. Elattar, On fuzzy numerical model dealing with the control of glucose in insulin therapies for diabetes via nonsingular kernel in the fuzzy sense. AIMS Math. 7(10), 17913–17941 (2022)

    Article  MathSciNet  Google Scholar 

  24. S. Rashid, R. Ashraf, Q.-U.-A. Asif, F. Jarad, Novel stochastic dynamics of a fractal-fractional immune effector response to viral infection via latently infectious tissues. MBE 19(11), 11563–11594 (2022)

    Article  MathSciNet  Google Scholar 

  25. H.M. Srivastava, S. Deniz, A new modified semi-analytical technique for a fractional-order Ebola virus disease model. RACSAM 115, 137 (2021). https://doi.org/10.1007/s13398-021-01081-9

    Article  MathSciNet  Google Scholar 

  26. M. AltafKhan, O. Kolebaje, A. Yildirim, S. Ullah, P. Kumam, P. Thounthong, Fractional investigations of zoonotic visceral leishmaniasis disease with singular and non-singular kernel. Eur. Phys. J. Plus 134, 481 (2019)

    Article  ADS  Google Scholar 

  27. Q. Haidong, M. ur Rahman, M. Arfan, M. Salimi, S. Salahshour, A. Ahmadian, Fractal-fractional dynamical system of Typhoid disease including protection from infection. Eng. Comput. (2021)

  28. A. Ahmad, M. Farman, P. Ahmad Naik, N. Zafar, A. Akgul, M. Umer Saleem, Modeling and numerical investigation of fractional-order bovine babesiosis disease. Numer. Methods Partial Differ. Equ. 37(3), 1946–1964 (2021)

    Article  MathSciNet  Google Scholar 

  29. C. Maji, D. Mukherjee, D. Kesh, Study of a fractional-order model of chronic wasting disease. Math. Methods Appl. Sci. 43(7), 4669–4682 (2020)

    MathSciNet  Google Scholar 

  30. P. Kumar, V.S. Erturk, The analysis of a time delay fractional COVID-19 model via Caputo type fractional derivative. Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.6935

    Article  Google Scholar 

  31. V.M. Pérez-García, O. León-Triana, M. Rosa, A. Pérez-Martínez, CAR T cells for T-cell leukemias: insights from mathematical models. Commun. Nonlinear Sci. Numer. Simulat. 96, 105684 (2021)

    Article  MathSciNet  Google Scholar 

  32. I. Podlubny, Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal. 5(4), 367–386 (2002)

    MathSciNet  Google Scholar 

  33. J.F.G. Aguilar, J.R. García, J.B. Alvarado, M. Guía, Mathematical modelling of the mass-spring-damper system: a fractional calculus approach. Acta Universitaria. 22(5), 5–11 (2012)

    Article  Google Scholar 

  34. K. Diethelm, A fractional calculus based model for the simulation of an outbreak of dengue fever. Nonlinear Dynam. 71, 613–619 (2013)

    Article  MathSciNet  Google Scholar 

  35. F.A. Rihan, A.A. Arafa, R. Rakkiyappan, C. Rajivganthi, Y. Xu, Fractional-order delay differential equations for the dynamics of hepatitis C virus infection with IFN-\(\alpha\) treatment. Alex. Eng. J. 60, 4761–4774 (2021)

    Article  Google Scholar 

  36. H. Hassani, J.A. Tenreiro Machado, Z. Avazzadeh, An effective numerical method for solving nonlinear variable-order fractional functional boundary value problems through optimization technique. Nonlinear Dynam. 97, 2041–2054 (2019)

    Article  Google Scholar 

  37. H. Hassani, Z. Avazzadeh, J.A. TenreiroMachado, Numerical approach for solving variable-order space-time fractional telegraph equation using transcendental Bernstein series. Eng. Comput. 36, 867–878 (2020)

    Article  Google Scholar 

  38. G. Estrada-Rodriguez, H. Gimperlein, K.J. Painter, J. Stocek, Space-time fractional diffusion in cell movement models with delay. Math. Models Methods Appl. Sci. 29(1), 65–88 (2019)

    Article  MathSciNet  Google Scholar 

  39. S. Cayan, M. Sezer, A novel study based on Lerch polynomials for approximate solutions of pure Neumann problem. Int. J. Appl. Comput. Math 8, 8 (2022)

    Article  MathSciNet  Google Scholar 

  40. V. Kruchinin, D. Kruchinin, Explicit formulas for some generalized polynomials. Appl. Math. Inf. Sci. 7, 2083–2088 (2013)

    Article  MathSciNet  Google Scholar 

  41. Y. Li, Y. Chen, I. Podlubny, Stability of fractional-order non linear dynamic systems: Lyapunov direct method and generalized Mittag–Leffler stability. Comput. Math. Appl. 59, 1810–1821 (2010)

    Article  MathSciNet  Google Scholar 

  42. S. Feins, W. Kong, E.F. Williams, M.C. Milone, J.A. Fraietta, An introduction to chimeric antigen receptor (CAR) T-cell immunotherapy for human cancer. Am. J. Hematol. 94(S1), S3–S9 (2019)

    Article  Google Scholar 

Download references

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to each part of this work.

Corresponding author

Correspondence to H. Hassani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avazzadeh, Z., Hassani, H., Ebadi, M.J. et al. Generalized Lerch polynomials: application in fractional model of CAR-T cells for T-cell leukemia. Eur. Phys. J. Plus 138, 1152 (2023). https://doi.org/10.1140/epjp/s13360-023-04786-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04786-5

Navigation