Skip to main content
Log in

Standing wave solutions for the Free Maxwell Equations in Vacuum with azimuthal symmetry in cylindrical coordinates

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The aim of this paper is to get analytical solutions for the Free Maxwell Equations in Vacuum, using a cylindrical coordinate system, considering axial symmetry. The solutions represent steady-state electromagnetic field configurations in the form of closed magnetic surfaces where the magnetic field is time-dependent and tangential on these surfaces, and there is no electric field on them, and each of these closed surfaces includes a ring-like configuration of time-dependent electric field and tangential to the ring, without magnetic field on them. We analyse the temporal variation of the energy density together with the Poynting vector field, which describes the electromagnetic energy flow. We conclude that these configurations behave as standing wave solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

All data generated or analysed during this study are included in this published article (Appendix 1).

Notes

  1. A polar vector changes its sign under the coordinate inversion transformation, but an axial one does not change.

References

  1. A.E. Chubykalo, A.A. Espinoza, Unusual formations of the electromagnetic field in vacuum. J. Phys. A Math. Gen. 35, 8043–8053 (2002). https://doi.org/10.1088/0305-4470/35/38/307

    Article  ADS  MathSciNet  Google Scholar 

  2. D.A. Pérez-Carlos, A. Gutiérrez Rodríguez, A. Espinoza Garrido, Steady-state magnetic trap configurations for the axially symmetric free electromagnetic field in vacuum. Eur. Phys. J. Plus 138(2), 334 (2023). https://doi.org/10.1140/epjp/s13360-023-03945-y

    Article  Google Scholar 

  3. T. Wiegelmann, T. Sakurai, Solar force-free magnetic fields. Living Rev. Sol. Phys. 18(1), 1–67 (2021). https://doi.org/10.1007/s41116-020-00027-4

    Article  ADS  Google Scholar 

  4. J.J. Ali, How much energy can be stored in a three-dimensional force-free magnetic field? Astrophys. J. 375, 61–64 (1991). https://doi.org/10.1086/186088

    Article  ADS  Google Scholar 

  5. H. Lamb, Hydrodynamics (Cambridge University Press, London, 1975)

    Google Scholar 

  6. V.I. Arnold, Khesin: Topologycal Methods in Hydrodynamics. International Series of Monographs on Physics, vol. 125 (Cambridge University Press, London, 1975)

    Google Scholar 

  7. R.P. Cameron, Monochromatic knots and other unusual electromagnetic disturbances: light localised in 3D. J. Opt. 2, 015024 (2018). https://doi.org/10.1088/2399-6528/aa9761

    Article  Google Scholar 

  8. S. Fatholahzadeh, M. Jafarpour, S. Nasiri, Applying the Lagrange multiplier technique to reconstruct a force-free magnetic field. Astron. Astrophys. 676, 120 (2023). https://doi.org/10.1051/0004-6361/202243471

    Article  ADS  Google Scholar 

  9. G.E. Marsh, A force-free magnetic field solution in toroidal coordinates. Phys. Plasmas 30(5), 052903 (2023). https://doi.org/10.1063/5.0146040

    Article  Google Scholar 

  10. T. Fernholz, R. Gerritsma, R. Spreeuw, P. Krueger, Dynamically controlled toroidal and ring-shaped magnetic traps. Phys. Rev. A 75(6), 063406 (2007). https://doi.org/10.1103/PhysRevA.75.063406

    Article  ADS  Google Scholar 

  11. D. Tharakkal, A.P. Snodin, G.R. Sarson, A. Shukurov, Cosmic rays and random magnetic traps. Phys. Rev. E 107(6), 065206 (2023). https://doi.org/10.1103/PhysRevE.107.065206

    Article  ADS  Google Scholar 

  12. R.P. Cameron, F.C. Speirits, C.R. Gilson, L. Allen, S.M. Barnett, The azimuthal component of Poynting’s vector and the angular momentum of light. J. Opt. 17(12), 125610 (2015). https://doi.org/10.1088/2040-8978/17/12/125610

    Article  ADS  Google Scholar 

  13. V. Cooray, G. Cooray, M. Rubinstein, F. Rachidi, Hints of the photonic nature of the electromagnetic fields in classical electrodynamics. J. Electromagn. Anal. Appl. 15(3), 25–42 (2023). https://doi.org/10.4236/jemaa.2023.153003

    Article  ADS  Google Scholar 

  14. V. Onoochin, Violation of Gauss’s law in Schott’s solution. Indian J. Phys. 97(7), 2103–2108 (2023). https://doi.org/10.1007/s12648-023-02587-1

    Article  ADS  Google Scholar 

Download references

Acknowledgements

D. A. P. C. appreciates the post-doctoral stay founded by CONAHCYT. A. G. R. thank SNII (México).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Pérez-Carlos.

Appendix 1: Treatment of other solutions for the electromagnetic field in vacuum

Appendix 1: Treatment of other solutions for the electromagnetic field in vacuum

Consider case 1 of solutions (37) and (38) of section 2.1, where \(\xi =0\), \(AB\ne 0\). In this case, the vector \(\textbf{a}(\textbf{r})\) is

$$\begin{aligned} \textbf{a}(\textbf{r})&=\nu (c_{1}\rho +c_{2}\rho ^{-1})(-A\cos {\nu z}+B\sin {\nu z})\hspace{0.2em}\hat{\textbf{e}}_{\rho } \nonumber \\&\quad +k(c_{1}\rho +c_{2}\rho ^{-1})(A\sin {\nu z}+B\cos {\nu z})\hspace{0.2em}\hat{\textbf{e}}_{\phi } \nonumber \\&\quad +2c_{1}\rho (A\sin {\nu z}+B\cos {\nu z})\hspace{0.2em}\hat{\textbf{e}}_{z}. \end{aligned}$$
(68)

We use Eqs. (16) and (17) to separate spatial parts of the electric and magnetic fields. We obtain

$$\begin{aligned} \textbf{e}(\textbf{r})&=-\nu A(c_{1}\rho +c_{2}\rho ^{-1})\cos {\nu z}\hspace{0.2em}\hat{\textbf{e}}_{\rho } \nonumber \\&\quad +kB(c_{1}\rho +c_{2}\rho ^{-1})\cos {\nu z}\hspace{0.2em}\hat{\textbf{e}}_{\phi } \nonumber \\&\quad +2c_{1}A\rho \sin {\nu z}\hspace{0.2em}\hat{\textbf{e}}_{z}, \end{aligned}$$
(69)

and

$$\begin{aligned} \textbf{b}(\textbf{r})&=\nu B(c_{1}\rho +c_{2}\rho ^{-1})\sin {\nu z}\hspace{0.2em}\hat{\textbf{e}}_{\rho } \nonumber \\&\quad +kA(c_{1}\rho +c_{2}\rho ^{-1})\sin {\nu z}\hspace{0.2em}\hat{\textbf{e}}_{\phi } \nonumber \\&\quad +2c_{1}B\rho \cos {\nu z}\hspace{0.2em}\hat{\textbf{e}}_{z}. \end{aligned}$$
(70)

Because we want the solutions to correspond again to standing waves, we need to apply the condition \(\textbf{e}(\textbf{r})\cdot \textbf{b}(\textbf{r})=0\) to these solutions. We have the two cases \(A=0\) and \(B=1\) or \(A=1\) and \(B=0\). For the former conditions

$$\begin{aligned} \textbf{e}(\textbf{r})=k(c_{1}\rho +c_{2}\rho ^{-1})\cos {\nu z}\hspace{0.2em}\hat{\textbf{e}}_{\phi }, \end{aligned}$$
(71)

and

$$\begin{aligned} \textbf{b}(\textbf{r})= \nu (c_{1}\rho +c_{2}\rho ^{-1})\sin {\nu z}\hspace{0.2em}\hat{\textbf{e}}_{\rho }+2c_{1}\rho \cos {\nu z}\hspace{0.2em}\hat{\textbf{e}}_{z}. \end{aligned}$$
(72)

Therefore, the full solution for this case is

$$\begin{aligned} \textbf{E}(\textbf{r},t)=\left[ k(c_{1}\rho +c_{2}\rho ^{-1})\cos {\nu z}\hspace{0.2em}\hat{\textbf{e}}_{\phi } \right] \sin {\omega t}, \end{aligned}$$
(73)

and

$$\begin{aligned} \textbf{B}(\textbf{r},t)= \left[ \nu (c_{1}\rho +c_{2}\rho ^{-1})\sin {\nu z}\hspace{0.2em}\hat{\textbf{e}}_{\rho }+2c_{1}\rho \cos {\nu z}\hspace{0.2em}\hat{\textbf{e}}_{z} \right] \cos {\omega t}. \end{aligned}$$
(74)

For the last conditions \(A=1\) and \(B=0\) we get

$$\begin{aligned} \textbf{e}(\textbf{r})=-\nu (c_{1}\rho +c_{2}\rho ^{-1})\cos {\nu z}\hspace{0.2em}\hat{\textbf{e}}_{\rho }+2c_{1}\rho \sin {\nu z}\hspace{0.2em}\hat{\textbf{e}}_{z}, \end{aligned}$$
(75)

and

$$\begin{aligned} \textbf{b}(\textbf{r})=k(c_{1}\rho +c_{2}\rho ^{-1})\sin {\nu z}\hspace{0.2em}\hat{\textbf{e}}_{\phi }. \end{aligned}$$
(76)

These results allow us to write the full solution for the second case as

$$\begin{aligned} \textbf{E}(\textbf{r},t)= \left[ -\nu (c_{1}\rho +c_{2}\rho ^{-1})\cos {\nu z}\hspace{0.2em}\hat{\textbf{e}}_{\rho }+2c_{1}\rho \sin {\nu z}\hspace{0.2em}\hat{\textbf{e}}_{z} \right] \sin {\omega t}, \end{aligned}$$
(77)

and

$$\begin{aligned} \textbf{B}(\textbf{r},t)=k(c_{1}\rho +c_{2}\rho ^{-1})\sin {\nu z}\cos {\omega t}\hspace{0.2em}\hat{\textbf{e}}_{\phi }. \end{aligned}$$
(78)

These sets of solutions (73)–(74) and (77)–(78) diverge at the origin of coordinates as well as at infinity.

For the case 3, \(A=1\), \(B=0\), and \(\xi \ne 0\), we have

$$\begin{aligned} \textbf{E}(\textbf{r},t) &= {} \left[ -\nu J_{1}(\xi \rho )\cos {\nu z}\hspace{0.2em}\hat{\textbf{e}}_{\rho }+\xi J_{0}(\xi \rho )\sin {\nu z}\hspace{0.2em}\hat{\textbf{e}}_{z}\right] \sin {\omega t}, \end{aligned}$$
(79)
$$\begin{aligned} \textbf{B}(\textbf{r},t) &= {} k J_{1}(\xi \rho )\sin {\nu z}\cos {\omega t}\hspace{0.2em}\hat{\textbf{e}}_{\phi }. \end{aligned}$$
(80)

Analogous to the analysis in Sects. 3 and 4, we conclude that in this case, we obtain closed surfaces of the electric field in a hollow flat washer form, where the electric field is tangential over all the surfaces, and inside of each electric closed surface, there is only one magnetic field in the form of a ring.

The energy density for the solutions (79) and (80) is

$$\begin{aligned} W=W_{0}-\left\{ W_{0}-\frac{1}{8\pi } \nu ^{2}J_{1}^{2}(\xi \rho )\sin ^{2}{\nu z} \right\} \cos {2\omega t}, \end{aligned}$$
(81)

where

$$\begin{aligned} W_{0}=\frac{1}{16\pi } \left[ (\nu J_{1}(\xi \rho )\cos {\nu z})^{2} +(k J_{1}(\xi \rho )\sin {\nu z})^{2} +(\xi J_{0}(\xi \rho )\sin {\nu z})^{2} \right] . \end{aligned}$$
(82)

Bot expressions (81) and (82) are different from the energy density given by Eqs. (64) and (65).

The Poyntig vector field is

$$\begin{aligned} \textbf{S}=\frac{\omega }{8\pi }[\nu J_{1}^{2}(\xi \rho )\sin {\nu z}\cos {\nu z} \hspace{0.2em}\hat{\textbf{e}}_{z}-\xi J_{0}(\xi \rho )J_{1}(\xi \rho )\sin ^{2}{\nu z}\hspace{0.2em}\hat{\textbf{e}}_{\rho }]\sin {2\omega t}. \end{aligned}$$
(83)

This expression differs from Eq. (67). Expression (83) implies that the Poynting vector is zero on the electric surfaces and on the magnetic rings.

Both sets of solutions (46)–(47) and (79)–(80), which are convergent, can be taken, separately or combined, as a basis for constructing particular solutions of Maxwell’s equations with axial symmetry and convergent at the origin of coordinates and at infinity. However, the properties of these new solutions depend on the particular problem to be solved.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Carlos, D.A., Gutiérrez-Rodríguez, A. & Espinoza-Garrido, A. Standing wave solutions for the Free Maxwell Equations in Vacuum with azimuthal symmetry in cylindrical coordinates. Eur. Phys. J. Plus 138, 1148 (2023). https://doi.org/10.1140/epjp/s13360-023-04780-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04780-x

Navigation