Skip to main content
Log in

Investigating stochastic volatility and jumps in inflation dynamics: an empirical evidence with oil price effect

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This paper deals with an analysis of the inflation dynamics using Stochastic Differential Equations framework. We design a novel model which aims to reveal the outstanding features of the inflation rate including stochastic volatility and spikes. The considered modeling approach enhances the pre-existing models by introducing stochastic volatility, mean-reversion and jumps in the concerned state process. The mathematical framework combines an economic model derived from inflation theories and a diffusion model based on probability analysis, which are successfully tested using empirical estimation and simulation tools. The Joint Maximum Likelihood equation is then calculated to estimate the model parameters for the U.S. inflation rate. We find that integrating stochastic volatility and jumps in the inflation rate process is absolutely essential to effectively simulate the actual dynamics. We derive inflation rate responses to oil price shocks and confirm the validity of the resulting models by their potential to incorporate observed inflation dynamics. The study provides a realistic and reproducible modeling approach to address the inflation rate challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Author comments: The data that support the findings of this study are freely available from Federal Reserve Economic Data (FRED) and Energy Information Administration (EIA).]

Notes

  1. A representation of volatility instead of variance process in SV models is given by Stein and Stein [52].

  2. For a similar representation, see for instance Larsson and Nossman [40] model.

  3. As the reader will notice, the persistence value is given by \((1-\beta )\) for inflation rate and \((1-\kappa )\) for volatility.

  4. It is calculated as the khi-squared law of the log-likelihood using the number of parameters as the degree of freedom.

References

  1. I.A. Abbas, Finite element analysis of the thermoelastic interactions in an unbounded body with a cavity. Forsch. Ingenieurwes. 71(3–4), 215–222 (2007). https://doi.org/10.1007/s10010-007-0060-x

    Article  Google Scholar 

  2. I. Abbas, A. Hobiny, M. Marin, Photo-thermal interactions in a semi-conductor material with cylindrical cavities and variable thermal conductivity. J. Taibah Univ. Sci. 14(1), 1369–1376 (2020). https://doi.org/10.1080/16583655.2020.1824465

    Article  Google Scholar 

  3. I.A. Abbas, R. Kumar, 2d Deformation in initially stressed thermoelastic half-space with voids. Steel Compos. Struct. 20(5), 1103–1117 (2016). https://doi.org/10.12989/scs.2016.20.5.1103

    Article  Google Scholar 

  4. F. Alzahrani, A. Hobiny, I. Abbas, M. Marin, An eigenvalues approach for a two-dimensional porous medium based upon weak, normal and strong thermal conductivities. Symmetry 12(5), 848 (2020). https://doi.org/10.3390/sym12050848

    Article  ADS  Google Scholar 

  5. A.M. Zenkour, I.A. Abbas, Nonlinear transient thermal stress analysis of temperature-dependent hollow cylinders using a finite element model. Int. J. Struct. Stab. Dyn. 14(07), 1450025 (2014). https://doi.org/10.1142/S0219455414500254

    Article  MathSciNet  Google Scholar 

  6. M. Marin, A. Hobiny, I. Abbas, The effects of fractional time derivatives in porothermoelastic materials using finite element method. Mathematics 9(14), 1606 (2021). https://doi.org/10.3390/math9141606

    Article  Google Scholar 

  7. S. Yazdani, M. Hadizadeh, V. Fakoor, Computational analysis of the behavior of stochastic volatility models with financial applications. J. Comput. Appl. Math. 411, 114–258 (2022). https://doi.org/10.1016/j.cam.2022.114258

    Article  MathSciNet  Google Scholar 

  8. K. Akdim, Y. Ouknine, Infinite horizon reflected backward SDEs with jumps and RCLL obstacle. Stoch. Anal. Appl. 24(6), 1239–1261 (2006). https://doi.org/10.1080/07362990600959448

    Article  MathSciNet  Google Scholar 

  9. J.P. Bishwal, Parameter Estimation in Stochastic Volatility Models, 1st edn. (Springer, Cham, 2022)

    Book  Google Scholar 

  10. P. Brandimarte, Numerical Methods in Finance and Economics: A MATLAB-Based Introduction, 2nd edn. (Wiley, Hoboken, 2013)

    Google Scholar 

  11. J.-P. Bouchaud, M. Potters, Theory of Financial Risk and Derivative Pricing: From Statistical Physics to Risk Management, 2nd edn. (Cambridge University Press, Cambridge, 2003)

    Book  Google Scholar 

  12. G. Ascari, S. Fasani, J. Grazzini, L. Rossi, Endogenous uncertainty and the macroeconomic impact of shocks to inflation expectations. J. Monet. Econ. (2023). https://doi.org/10.1016/j.jmoneco.2023.04.002

    Article  Google Scholar 

  13. R. Bhar, G. Mallik, Inflation uncertainty, growth uncertainty, oil prices, and output growth in the UK. Empir. Econ. 45(3), 1333–1350 (2013). https://doi.org/10.1007/s00181-012-0650-9

    Article  Google Scholar 

  14. O.A. Adeosun, M.I. Tabash, X.V. Vo, S. Anagreh, Uncertainty measures and inflation dynamics in selected global players: a wavelet approach. Qual. Quant. 57(4), 3389–3424 (2023). https://doi.org/10.1007/s11135-022-01513-7

    Article  Google Scholar 

  15. M. Friedman, Nobel lecture: inflation and unemployment. J. Polit. Econ. 85(3), 451–472 (1977)

    Article  Google Scholar 

  16. C.A. Ball, W.N. Torous, A simplified jump process for common stock returns. J. Financ. Quant. Anal. 18(1), 53–65 (1983). https://doi.org/10.2307/2330804

    Article  Google Scholar 

  17. A. Cukierman, A.H. Meltzer, A theory of ambiguity, credibility, and inflation under discretion and asymmetric information. Econometrica 54(5), 1099–1128 (1986). https://doi.org/10.2307/1912324

    Article  Google Scholar 

  18. O. Karahan, The relationship between inflation and inflation uncertainty: evidence from the Turkish economy. Procedia Econ. Finance 1, 219–228 (2012). https://doi.org/10.1016/S2212-5671(12)00026-3

    Article  Google Scholar 

  19. Z. Ozdemir, M. Fisunoǧlu, On the inflation-uncertainty hypothesis in Jordan, Philippines and Turkey: a long memory approach. Int. Rev. Econ. Finance 17, 1–12 (2008). https://doi.org/10.1016/j.iref.2005.10.003

    Article  Google Scholar 

  20. M.H. Berument, Y. Yalcin, J.O. Yildirim, The inflation and inflation uncertainty relationship for Turkey: a dynamic framework. Empir. Econ. 41(2), 293–309 (2011). https://doi.org/10.1007/s00181-010-0377-4

    Article  Google Scholar 

  21. E. Eisenstat, R.W. Strachan, modeling inflation volatility. J. Appl. Econom. 31(5), 805–820 (2016)

    Article  Google Scholar 

  22. Z. Ftiti, F. Jawadi, Forecasting inflation uncertainty in the United States and Euro area. Comput. Econ. 54(1), 455–476 (2019). https://doi.org/10.1007/s10614-018-9794-9

    Article  Google Scholar 

  23. S.E. Cekin, V.J. Valcarcel, Inflation volatility and inflation in the wake of the great recession. Empir. Econ. 59(4), 1997–2015 (2020). https://doi.org/10.1007/s00181-019-01724-2

    Article  Google Scholar 

  24. T. Loossens, F. Tuerlinckx, S. Verdonck, A comparison of continuous and discrete time modeling of affective processes in terms of predictive accuracy. Sci. Rep. 11(1), 6218 (2021)

    Article  Google Scholar 

  25. I. Karatzas, S.E. Shreve, Brownian Motion and Stochastic Calculus, 2nd edn. (Springer, New York, 1996)

    Google Scholar 

  26. P. Baldi, Stochastic Calculus (Springer, Cham, 2017). https://doi.org/10.1007/978-3-319-62226-2

    Book  Google Scholar 

  27. S.L. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financ. Stud. 6(2), 327–343 (1993)

    Article  MathSciNet  Google Scholar 

  28. S. Bayracı, G. Ünal, Stochastic interest rate volatility modeling with a continuous-time GARCH(1, 1) model. J. Comput. Appl. Math. 259, 464–473 (2014). https://doi.org/10.1016/j.cam.2013.10.017

    Article  MathSciNet  Google Scholar 

  29. X. Gong, Z. He, P. Li, N. Zhu, Forecasting return volatility of the CSI 300 index using the stochastic volatility model with continuous volatility and jumps. Discret. Dyn. Nat. Soc. 2014, 964654 (2014). https://doi.org/10.1155/2014/964654

    Article  Google Scholar 

  30. N. Gudkov, K. Ignatieva, Electricity price modeling with stochastic volatility and jumps: an empirical investigation. Energy Econ. 98, 105–260 (2021). https://doi.org/10.1016/j.eneco.2021.105260

    Article  Google Scholar 

  31. R. Cont, P. Tankov, Financial modeling with Jump Processes, 1st edn. (Chapman and Hall/CRC, Boca Raton, 2003)

    Google Scholar 

  32. K. Akdim, A. Ez-Zetouni, M. Zahid, A stochastic vaccinated epidemic model incorporating Lévy processes with a general awareness-induced incidence. Int. J. Biomath. 14(06), 2150044 (2021). https://doi.org/10.1142/S1793524521500443

    Article  Google Scholar 

  33. C. Anderl, G.M. Caporale, Asymmetries, uncertainty and inflation: evidence from developed and emerging economies. J. Econ. Finance (2023). https://doi.org/10.1007/s12197-023-09639-6

    Article  Google Scholar 

  34. P. Castillo, C. Montoro, V. Tuesta, Inflation, oil price volatility and monetary policy. J. Macroecon. 66, 103–259 (2020). https://doi.org/10.1016/j.jmacro.2020.103259

    Article  Google Scholar 

  35. F. Wen, K. Zhang, X. Gong, The effects of oil price shocks on inflation in the G7 countries. N. Am. J. Econ. Finance 57, 101391 (2021). https://doi.org/10.1016/j.najef.2021.101391

    Article  Google Scholar 

  36. L. Kilian, X. Zhou, The impact of rising oil prices on U.S. inflation and inflation expectations in 2020–23. Energy Econ. 113, 106–228 (2022). https://doi.org/10.1016/j.eneco.2022.106228

    Article  Google Scholar 

  37. P.J. Ferderer, Oil price volatility and the macroeconomy. J. Macroecon. 18(1), 1–26 (1996). https://doi.org/10.1016/S0164-0704(96)80001-2

    Article  Google Scholar 

  38. W.-C. Lu, T.-K. Liu, C.-Y. Tseng, Volatility transmissions between shocks to the oil price and inflation: evidence from a bivariate Garch approach. J. Inf. Optim. Sci. 31(4), 927–939 (2010). https://doi.org/10.1080/02522667.2010.10700003

    Article  Google Scholar 

  39. K. Ito, The impact of oil price volatility on the macroeconomy in Russia. Ann. Reg. Sci. 48(3), 695–702 (2012). https://doi.org/10.1007/s00168-010-0417-1

    Article  Google Scholar 

  40. K. Larsson, M. Nossman, Jumps and stochastic volatility in oil prices: time series evidence. Energy Econ. 33(3), 504–514 (2011). https://doi.org/10.1016/j.eneco.2010.12.016

    Article  Google Scholar 

  41. Z. Ebrahim, O.R. Inderwildi, D.A. King, Macroeconomic impacts of oil price volatility: mitigation and resilience. Front. Energy 8, 9–24 (2014). https://doi.org/10.1007/s11708-014-0303-0

    Article  Google Scholar 

  42. D. Oyuna, L. Yaobin, Forecasting the crude oil prices volatility with stochastic volatility models. SAGE Open (2021). https://doi.org/10.1177/21582440211026269

    Article  Google Scholar 

  43. N. Köse, E. Ünal, The effects of the oil price and oil price volatility on inflation in Turkey. Energy 226, 120–392 (2021). https://doi.org/10.1016/j.energy.2021.120392

    Article  Google Scholar 

  44. S. Rahman, Oil price volatility and the US stock market. Empir. Econ. (2021). https://doi.org/10.1007/s00181-020-01906-3

    Article  Google Scholar 

  45. Y. Zhang, M. Hyder, Z.A. Baloch, C. Qian, H. Berk Saydaliev, Nexus between oil price volatility and inflation: mediating nexus from exchange rate. Resour. Policy 79, 102977 (2022). https://doi.org/10.1016/j.resourpol.2022.102977

    Article  Google Scholar 

  46. O. Coibion, Y. Gorodnichenko, Information rigidity and the expectations formation process: a simple framework and new facts. Am. Econ. Rev. 105(8), 2644–2678 (2015). https://doi.org/10.1257/aer.20110306

    Article  Google Scholar 

  47. R.F. Engle, Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica 50(4), 987–1007 (1982). https://doi.org/10.2307/1912773

    Article  MathSciNet  Google Scholar 

  48. T. Bollerslev, Generalized autoregressive conditional heteroskedasticity. J. Econom. 31(3), 307–327 (1986). https://doi.org/10.1016/0304-4076(86)90063-1

    Article  MathSciNet  Google Scholar 

  49. S.J. Taylor, modeling Financial Times Series, 2nd edn. (World Scientific Pub Co Inc, New Jersey, 2008)

    Google Scholar 

  50. G.W. Schwert, Why does stock market volatility change over time? J. Finance 44(5), 1115–1153 (1989). https://doi.org/10.1111/j.1540-6261.1989.tb02647.x

    Article  Google Scholar 

  51. L. Arnold, Stochastic Differential Equations: Theory and Applications, 1st edn. (Wiley Interscience, New York, 1974)

    Google Scholar 

  52. E.M. Stein, J.C. Stein, Stock price distributions with stochastic volatility: an analytic approach. Rev. Financ. Stud. 4(4), 727–752 (1991). https://doi.org/10.1093/rfs/4.4.727

    Article  Google Scholar 

  53. J.C. Cox, J.E. Ingersoll, S.A. Ross, An intertemporal general equilibrium model of asset prices. Econometrica 53(2), 363–384 (1985). https://doi.org/10.2307/1911241

    Article  MathSciNet  Google Scholar 

  54. G.E. Uhlenbeck, L.S. Ornstein, On the theory of the Brownian motion. Phys. Rev. 36(5), 823–841 (1930). https://doi.org/10.1103/PhysRev.36.823

    Article  ADS  Google Scholar 

  55. J.W. Tukey, Exploratory Data Analysis (Addison-Wesley Pub. Co., Reading, 1977)

    Google Scholar 

  56. Y.L. Tong, The Multivariate Normal Distribution (Springer, New York, 1990). https://doi.org/10.1007/978-1-4613-9655-0

    Book  Google Scholar 

  57. P. Olofsson, M. Andersson, Probability, Statistics, and Stochastic Processes, 2nd edn. (Wiley, Hoboken, 2012)

    Book  Google Scholar 

  58. N.T. Thomopoulos, Essentials of Monte Carlo Simulation: Statistical Methods for Building Simulation Models (Springer, New York, 2013). https://doi.org/10.1007/978-1-4614-6022-0

    Book  Google Scholar 

  59. G.E.P. Box, M.E. Muller, A note on the generation of random normal deviates. Ann. Math. Stat. 29(2), 610–611 (1958). https://doi.org/10.1214/aoms/1177706645

    Article  Google Scholar 

  60. G. Koop, M.H. Pesaran, S.M. Potter, Impulse response analysis in nonlinear multivariate models. J. Econom. 74(1), 119–147 (1996). https://doi.org/10.1016/0304-4076(95)01753-4

    Article  MathSciNet  Google Scholar 

  61. X. Jin, Volatility transmission and volatility impulse response functions among the greater China stock markets. J. Asian Econ. 39, 43–58 (2015). https://doi.org/10.1016/j.asieco.2015.05.004

    Article  Google Scholar 

  62. D.A. Dickey, W.A. Fuller, Distribution of the estimators for autoregressive time series with a unit root. J. Am. Stat. Assoc. 74(366a), 427–431 (1979). https://doi.org/10.1080/01621459.1979.10482531

    Article  MathSciNet  Google Scholar 

  63. P.C.B. Phillips, P. Perron, Testing for a unit root in time series regression. Biometrika 75(2), 335–346 (1988). https://doi.org/10.1093/biomet/75.2.335

    Article  MathSciNet  Google Scholar 

  64. S.S. Shapiro, M.B. Wilk, An analysis of variance test for normality (complete samples). Biometrika 52(3/4), 591–611 (1965). https://doi.org/10.2307/2333709

    Article  MathSciNet  Google Scholar 

  65. Y. Guo, F. Ma, H. Li, X. Lai, Oil price volatility predictability based on global economic conditions. Int. Rev. Financ. Anal. 82, 102–195 (2022). https://doi.org/10.1016/j.irfa.2022.102195

    Article  Google Scholar 

  66. F. Pivetta, R. Reis, The persistence of inflation in the United States. J. Econ. Dyn. Control 31(4), 1326–1358 (2007). https://doi.org/10.1016/j.jedc.2006.05.001

    Article  Google Scholar 

  67. D.A. Dickey, W.A. Fuller, Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica 49(4), 1057–1072 (1981). https://doi.org/10.2307/1912517

    Article  MathSciNet  Google Scholar 

  68. J.D. Hamilton, What is an oil shock? J. Econom. 113(2), 363–398 (2003). https://doi.org/10.1016/S0304-4076(02)00207-5

    Article  MathSciNet  Google Scholar 

  69. C.F. Baum, P. Zerilli, Jumps and stochastic volatility in crude oil futures prices using conditional moments of integrated volatility. Energy Econ. 53, 175–181 (2016). https://doi.org/10.1016/j.eneco.2014.10.007

    Article  Google Scholar 

  70. J. Li, Bayesian estimation of the stochastic volatility model with double exponential jumps. Rev. Deriv. Res. (2021). https://doi.org/10.1007/s11147-020-09173-1

    Article  ADS  Google Scholar 

  71. S. Federico, G. Ferrari, L. Regis, Applications of Stochastic Optimal Control to Economics and Finance (MDPI-Multidisciplinary Digital Publishing Institute, Switzerland, 2020). https://doi.org/10.3390/books978-3-03936-059-8

    Book  Google Scholar 

  72. K. Akdim, Y. Ouknine, I. Turpin, Variational inequalities for combined control and stopping game. Stoch. Anal. Appl. 24(6), 1263–1284 (2006). https://doi.org/10.1080/07362990600959455

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors of this paper would like to extend heartfelt gratitude to the High Commission for Planning (HCP)—Morocco for their commitment to fostering a collaborative environment between the HCP research team and the Academia. This collaboration has been instrumental in advancing our work. Special thanks are due to the High Commissioner for Planning, Ahmed LAHLIMI ALAMI, for his insights and dedication to promoting scientific inquiry, which have inspired a deeper understanding and appreciation of the economic field in Morocco. This collaboration has been a cornerstone of our achievements, and we are profoundly thankful for the opportunity to work in such a stimulating and supportive research environment.

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khadija Akdim.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Appendix: Pseudocodes

Appendix: Pseudocodes

Algorithm 1
figure a

Algorithm to obtain the parameter estimation

Algorithm 2
figure b

Algorithm to obtain the simulation paths of inflation rate

Algorithm 3
figure c

Algorithm to obtain the Impulse Response Function

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bikourne, M., Akdim, K., Khellaf, A. et al. Investigating stochastic volatility and jumps in inflation dynamics: an empirical evidence with oil price effect. Eur. Phys. J. Plus 138, 1142 (2023). https://doi.org/10.1140/epjp/s13360-023-04778-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04778-5

Navigation