Skip to main content
Log in

Shadows and rings of a de Sitter–Schwarzschild black hole

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We study the optical appearance of a de Sitter–Schwarzschild black hole and its distinguishability from a Schwarzschild black hole. By exploring various accretion models and emission profiles, we investigate the impact of different parameters on the observed shadows and intensity profiles. Our analysis reveals that the outer edge of the shadow, corresponding to the apparent radius of the photon sphere, remains consistent regardless of the spherical accretion details or the size of the black hole. However, subtle differences in the overall brightness and intensity distribution can arise between these two black holes, especially for emission models with sharp peaks near the event horizon. We find that the de Sitter–Schwarzschild black hole tends to exhibit a slightly darker appearance in certain scenarios, while in others, it can appear slightly brighter than the Schwarzschild black hole. These distinctions become more prominent as the radial emission decreases more rapidly. Nevertheless, the size of the shadow alone is not sufficient to differentiate the potential differences in the optical appearance between the de Sitter–Schwarzschild black hole and the Schwarzschild black hole. Instead, distinctions may be observed in the overall brightness of the image.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

No Data associated in the manuscript.

Notes

  1. A specific rest-frame frequency \(\nu _\star \) can be uniquely associated with a particular value of E.

References

  1. K. Schwarzschild, Über das gravitationsfeld eines massenpunktes nach der einsteinschen theorie. Sitzungsberichte der Deutschen Akademie der Wissenschaften zu Berlin, Klasse für Mathematik, Physik, und Technik 1916, 189–196 (1916)

    Google Scholar 

  2. C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (Princeton Univ. Press, Princeton, USA, 2017)

    Google Scholar 

  3. R. M. Wald, General Relativity (Chicago Univ. Press, Chicago, USA, 1984) https://doi.org/10.7208/chicago/9780226870373.001.0001

  4. S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space-time, Cambridge Monographs on Mathematical Physics (Cambridge Univ. Press, Cambridge, UK, 2011) https://doi.org/10.1017/CBO9780511524646

  5. J. M. Bardeen, Non-singular general-relativistic gravitational collapse, in Proc. Int. Conf. GR5, Tbilisi, Vol. 174 (sn, 1968) p. 174

  6. I. Dymnikova, Vacuum nonsingular black hole. Gen. Rel. Grav. 24, 235 (1992). https://doi.org/10.1007/BF00760226

    Article  MathSciNet  ADS  Google Scholar 

  7. I. Dymnikova, De Sitter-Schwarzschild black hole: Its particle-like core and thermodynamical properties. Int. J. Mod. Phys. D 5, 529 (1996)

    Article  ADS  Google Scholar 

  8. A. Borde, Regular black holes and topology change. Phys. Rev. D 55, 7615 (1997). https://doi.org/10.1103/PhysRevD.55.7615. arXiv:gr-qc/9612057

    Article  MathSciNet  ADS  Google Scholar 

  9. E. Ayon-Beato, A. Garcia, Regular black hole in general relativity coupled to nonlinear electrodynamics. Phys. Rev. Lett. 80, 5056 (1998). https://doi.org/10.1103/PhysRevLett.80.5056. arXiv:gr-qc/9911046

    Article  ADS  Google Scholar 

  10. E. Ayon-Beato, A. Garcia, New regular black hole solution from nonlinear electrodynamics. Phys. Lett. B 464, 25 (1999). https://doi.org/10.1016/S0370-2693(99)01038-2. arXiv:hep-th/9911174

    Article  MathSciNet  ADS  Google Scholar 

  11. K.A. Bronnikov, J.C. Fabris, Regular phantom black holes. Phys. Rev. Lett. 96, 251101 (2006). https://doi.org/10.1103/PhysRevLett.96.251101. arXiv:gr-qc/0511109

    Article  MathSciNet  ADS  Google Scholar 

  12. S.A. Hayward, Formation and evaporation of regular black holes. Phys. Rev. Lett. 96, 031103 (2006). https://doi.org/10.1103/PhysRevLett.96.031103. arXiv:gr-qc/0506126

    Article  ADS  Google Scholar 

  13. F.R. Klinkhamer, A new type of nonsingular black-hole solution in general relativity. Mod. Phys. Lett. A 29, 1430018 (2014). https://doi.org/10.1142/S0217732314300183. arXiv:1309.7011

    Article  MathSciNet  ADS  Google Scholar 

  14. V.P. Frolov, Notes on nonsingular models of black holes. Phys. Rev. D 94, 104056 (2016). https://doi.org/10.1103/PhysRevD.94.104056. arXiv:1609.01758 [gr-qc]

    Article  MathSciNet  ADS  Google Scholar 

  15. R. Carballo-Rubio, F. Di Filippo, S. Liberati, C. Pacilio, M. Visser, On the viability of regular black holes. JHEP 07, 023 (2018). https://doi.org/10.1007/JHEP07(2018)023. arXiv:1805.02675 [gr-qc]

    Article  MathSciNet  ADS  Google Scholar 

  16. Z.-L. Wang, Geodesic congruences in modified Schwarzschild black holes. Eur. Phys. J. C 82, 901 (2022). https://doi.org/10.1140/epjc/s10052-022-10843-7

    Article  ADS  Google Scholar 

  17. K. Akiyama et al., (Event Horizon Telescope), First M87 Event horizon telescope results. I. The shadow of the supermassive black hole. Astrophys. J. Lett. 875, L1 (2019). https://doi.org/10.3847/2041-8213/ab0ec7. arXiv:1906.11238 [astro-ph.GA]

    Article  ADS  Google Scholar 

  18. K. Akiyama et al., (Event Horizon Telescope), First M87 Event horizon telescope results. II. Array and instrumentation. Astrophys. J. Lett. 875, L2 (2019). https://doi.org/10.3847/2041-8213/ab0c96. arXiv:1906.11239 [astro-ph.IM]

    Article  ADS  Google Scholar 

  19. K. Akiyama et al., (Event Horizon Telescope), First M87 Event horizon telescope results. III. Data processing and calibration. Astrophys. J. Lett. 875, L3 (2019). https://doi.org/10.3847/2041-8213/ab0c57. arXiv:1906.11240 [astro-ph.GA]

    Article  ADS  Google Scholar 

  20. K. Akiyama et al., (Event Horizon Telescope), First M87 Event horizon telescope results. IV. Imaging the central supermassive black hole. Astrophys. J. Lett. 875, L4 (2019). https://doi.org/10.3847/2041-8213/ab0e85. arXiv:1906.11241 [astro-ph.GA]

    Article  ADS  Google Scholar 

  21. K. Akiyama et al., (Event Horizon Telescope), First M87 Event horizon telescope results. V. Physical origin of the asymmetric ring. Astrophys. J. Lett. 875, L5 (2019). https://doi.org/10.3847/2041-8213/ab0f43. arXiv:1906.11242 [astro-ph.GA]

    Article  ADS  Google Scholar 

  22. K. Akiyama et al., (Event Horizon Telescope), First M87 Event horizon telescope results. VI. The shadow and mass of the central black hole. Astrophys. J. Lett. 875, L6 (2019). https://doi.org/10.3847/2041-8213/ab1141. arXiv:1906.11243 [astro-ph.GA]

    Article  ADS  Google Scholar 

  23. J.P. Luminet, Image of a spherical black hole with thin accretion disk. Astron. Astrophys. 75, 228 (1979)

    ADS  Google Scholar 

  24. H. Falcke, F. Melia, E. Agol, Viewing the shadow of the black hole at the galactic center. Astrophys. J. Lett. 528, L13 (2000). https://doi.org/10.1086/312423. arXiv:astro-ph/9912263

    Article  ADS  Google Scholar 

  25. A. Övgün, I. Sakallı, J. Saavedra, Shadow cast and Deflection angle of Kerr-Newman-Kasuya spacetime. JCAP 10, 041 (2018). https://doi.org/10.1088/1475-7516/2018/10/041. arXiv:1807.00388 [gr-qc]

    Article  MathSciNet  ADS  Google Scholar 

  26. S.E. Gralla, D.E. Holz, R.M. Wald, Black hole shadows, photon rings, and lensing rings. Phys. Rev. D 100, 024018 (2019). https://doi.org/10.1103/PhysRevD.100.024018. arXiv:1906.00873 [astro-ph.HE]

    Article  ADS  Google Scholar 

  27. R. Narayan, M.D. Johnson, C.F. Gammie, The shadow of a spherically accreting black hole. Astrophys. J. Lett. 885, L33 (2019). https://doi.org/10.3847/2041-8213/ab518c. arXiv:1910.02957 [astro-ph.HE]

    Article  ADS  Google Scholar 

  28. M. Khodadi, A. Allahyari, S. Vagnozzi, D.F. Mota, Black holes with scalar hair in light of the Event Horizon Telescope. JCAP 09, 026 (2020). https://doi.org/10.1088/1475-7516/2020/09/026. arXiv:2005.05992 [gr-qc]

    Article  MathSciNet  ADS  Google Scholar 

  29. X.-X. Zeng, H.-Q. Zhang, H. Zhang, Shadows and photon spheres with spherical accretions in the four-dimensional Gauss-Bonnet black hole. Eur. Phys. J. C 80, 872 (2020). https://doi.org/10.1140/epjc/s10052-020-08449-y. arXiv:2004.12074 [gr-qc]

    Article  ADS  Google Scholar 

  30. J. Peng, M. Guo, X.-H. Feng, Influence of quantum correction on black hole shadows, photon rings, and lensing rings. Chin. Phys. C 45, 085103 (2021). https://doi.org/10.1088/1674-1137/ac06bb. arXiv:2008.00657 [gr-qc]

    Article  ADS  Google Scholar 

  31. M. Okyay, A. Övgün, Nonlinear electrodynamics effects on the black hole shadow, deflection angle, quasinormal modes and greybody factors. JCAP 01, 01 (2022). https://doi.org/10.1088/1475-7516/2022/01/009009. arXiv:2108.07766 [gr-qc]

    Article  Google Scholar 

  32. Q. Gan, P. Wang, H. Wu, H. Yang, Photon ring and observational appearance of a hairy black hole. Phys. Rev. D 104, 044049 (2021). https://doi.org/10.1103/PhysRevD.104.044049. arXiv:2105.11770 [gr-qc]

    Article  MathSciNet  ADS  Google Scholar 

  33. V. Perlick, O.Y. Tsupko, Calculating black hole shadows: review of analytical studies. Phys. Rept. 947, 1 (2022). https://doi.org/10.1016/j.physrep.2021.10.004. arXiv:2105.07101 [gr-qc]

    Article  MathSciNet  ADS  Google Scholar 

  34. H.-M. Wang, Z.-C. Lin, S.-W. Wei, Optical appearance of Einstein-Æther black hole surrounded by thin disk. Nucl. Phys. B 985, 116026 (2022). https://doi.org/10.1016/j.nuclphysb.2022.116026. arXiv:2205.13174 [gr-qc]

    Article  Google Scholar 

  35. W.-D. Guo, S.-W. Wei, Y.-X. Liu, Shadow of a charged black hole with scalar hair. Eur. Phys. J. C 83, 197 (2023). https://doi.org/10.1140/epjc/s10052-023-11316-1. arXiv:2203.13477 [gr-qc]

    Article  ADS  Google Scholar 

  36. S. Vagnozzi et al., Horizon-scale tests of gravity theories and fundamental physics from the Event Horizon Telescope image of Sagittarius A. Class. Quant. Grav. 40, 165007 (2023). https://doi.org/10.1088/1361-6382/acd97b. arXiv:2205.07787 [gr-qc]

    Article  MathSciNet  ADS  Google Scholar 

  37. R.C. Pantig, A. Övgün, Testing dynamical torsion effects on the charged black hole’s shadow, deflection angle and greybody with M87* and Sgr. A* from EHT. Annals Phys. 448, 169197 (2023). https://doi.org/10.1016/j.aop.2022.169197. arXiv:2206.02161 [gr-qc]

    Article  MathSciNet  Google Scholar 

  38. R.C. Pantig, L. Mastrototaro, G. Lambiase, A. Övgün, Shadow, lensing, quasinormal modes, greybody bounds and neutrino propagation by dyonic ModMax black holes. Eur. Phys. J. C 82, 1155 (2022). https://doi.org/10.1140/epjc/s10052-022-11125-y. arXiv:2208.06664 [gr-qc]

    Article  ADS  Google Scholar 

  39. A. Uniyal, R.C. Pantig, A. Övgün, Probing a non-linear electrodynamics black hole with thin accretion disk, shadow, and deflection angle with M87* and Sgr A* from EHT. Phys. Dark Univ. 40, 101178 (2023). https://doi.org/10.1016/j.dark.2023.101178. arXiv:2205.11072 [gr-qc]

    Article  Google Scholar 

  40. X.-J. Wang, X.-M. Kuang, Y. Meng, B. Wang, J.-P. Wu, Rings and images of Horndeski hairy black hole illuminated by various thin accretions. Phys. Rev. D 107, 124052 (2023). https://doi.org/10.1103/PhysRevD.107.124052. arXiv:2304.10015 [gr-qc]

    Article  MathSciNet  ADS  Google Scholar 

  41. X.-J. Gao, X.-K. Yan, Y.-H. Yin, Y.-P. Hu, Gravitational lensing by a charged spherically symmetric black hole immersed in thin dark matter. Eur. Phys. J. C 83, 281 (2023). https://doi.org/10.1140/epjc/s10052-023-11414-0. arXiv:2303.00190 [gr-qc]

    Article  ADS  Google Scholar 

  42. K. Nozari, S. Saghafi, Asymptotically locally flat and AdS higher-dimensional black holes of Einstein–Horndeski–Maxwell gravity in the light of EHT observations: shadow behavior and deflection angle. Eur. Phys. J. C 83, 588 (2023). https://doi.org/10.1140/epjc/s10052-023-11755-w. arXiv:2305.17237 [gr-qc]

    Article  ADS  Google Scholar 

  43. A. Uniyal, S. Chakrabarti, M. Fathi, and A. Övgün, Observational Signatures: Shadow cast by the effective metric of photons for black holes with rational non-linear electrodynamics, (2023b), arXiv:2309.13680 [gr-qc]

  44. M. Heydari-Fard, Effect of quintessence dark energy on the shadow of Hayward black holes with spherical accretion, (2022), arXiv:2209.09103 [gr-qc]

  45. V. Cardoso, P. Pani, Testing the nature of dark compact objects: a status report. Living Rev. Rel. 22, 4 (2019). https://doi.org/10.1007/s41114-019-0020-4. arXiv:1904.05363 [gr-qc]

    Article  Google Scholar 

  46. J.A.L. Rosa, C.F.B. Macedo, D. Rubiera-Garcia, Imaging compact boson stars with hot spots and thin accretion disks. Phys. Rev. D 108, 044021 (2023). https://doi.org/10.1103/PhysRevD.108.044021. arXiv:2303.17296 [gr-qc]

    Article  MathSciNet  ADS  Google Scholar 

  47. J.A.L. Rosa, Observational properties of relativistic fluid spheres with thin accretion disks. Phys. Rev. D 107, 084048 (2023). https://doi.org/10.1103/PhysRevD.107.084048. arXiv:2302.11915 [gr-qc]

    Article  MathSciNet  ADS  Google Scholar 

  48. C. Bambi, Can the supermassive objects at the centers of galaxies be traversable wormholes? The first test of strong gravity for mm/sub-mm very long baseline interferometry facilities. Phys. Rev. D 87, 107501 (2013). https://doi.org/10.1103/PhysRevD.87.107501. arXiv:1304.5691 [gr-qc]

    Article  ADS  Google Scholar 

  49. T. Ohgami, N. Sakai, Wormhole shadows. Phys. Rev. D 91, 124020 (2015). https://doi.org/10.1103/PhysRevD.91.124020. arXiv:1704.07065 [gr-qc]

    Article  MathSciNet  ADS  Google Scholar 

  50. X. Wang, P.-C. Li, C.-Y. Zhang, M. Guo, Novel shadows from the asymmetric thin-shell wormhole. Phys. Lett. B 811, 135930 (2020). https://doi.org/10.1016/j.physletb.2020.135930. arXiv:2007.03327 [gr-qc]

    Article  MathSciNet  Google Scholar 

  51. H. Huang, J. Kunz, J. Yang, C. Zhang, Light ring behind wormhole throat: geodesics, images, and shadows. Phys. Rev. D 107, 104060 (2023). https://doi.org/10.1103/PhysRevD.107.104060. arXiv:2303.11885 [gr-qc]

    Article  MathSciNet  ADS  Google Scholar 

  52. Z.-L. Wang, On a Schwarzschild-type defect wormhole, arXiv:2307.01678 [gr-qc]

  53. R. Shaikh, P. Kocherlakota, R. Narayan, P.S. Joshi, Shadows of spherically symmetric black holes and naked singularities. Mon. Not. Roy. Astron. Soc. 482, 52 (2019). https://doi.org/10.1093/mnras/sty2624. arXiv:1802.08060 [astro-ph.HE]

    Article  ADS  Google Scholar 

  54. R. Shaikh, P.S. Joshi, Can we distinguish black holes from naked singularities by the images of their accretion disks? JCAP 10, 064 (2019). https://doi.org/10.1088/1475-7516/2019/10/064. arXiv:1909.10322 [gr-qc]

    Article  MathSciNet  ADS  Google Scholar 

  55. D. Dey, R. Shaikh, P.S. Joshi, Shadow of nulllike and timelike naked singularities without photon spheres. Phys. Rev. D 103, 024015 (2021). https://doi.org/10.1103/PhysRevD.103.024015. arXiv:2009.07487 [gr-qc]

    Article  MathSciNet  ADS  Google Scholar 

  56. G. Gyulchev, J. Kunz, P. Nedkova, T. Vetsov, S. Yazadjiev, Observational signatures of strongly naked singularities: image of the thin accretion disk. Eur. Phys. J. C 80, 1017 (2020). https://doi.org/10.1140/epjc/s10052-020-08575-7. arXiv:2003.06943 [gr-qc]

    Article  ADS  Google Scholar 

  57. D. Mihalas, B. Weibel Mihalas, Foundations of radiation hydrodynamics (Oxford University Press, New York, 1984)

    Google Scholar 

  58. X.-X. Zeng, H.-Q. Zhang, Influence of quintessence dark energy on the shadow of black hole. Eur. Phys. J. C 80, 1058 (2020). https://doi.org/10.1140/epjc/s10052-020-08656-7. arXiv:2007.06333 [gr-qc]

    Article  ADS  Google Scholar 

  59. A.M. Bauer, A. Cárdenas-Avendaño, C.F. Gammie, N. Yunes, Spherical accretion in alternative theories of gravity. Astrophys. J. 925, 119 (2022). https://doi.org/10.3847/1538-4357/ac3a03. arXiv:2111.02178 [gr-qc]

    Article  ADS  Google Scholar 

  60. P. Kocherlakota, L. Rezzolla, Distinguishing gravitational and emission physics in black hole imaging: spherical symmetry. Mon. Not. Roy. Astron. Soc. 513, 1229 (2022). https://doi.org/10.1093/mnras/stac891. arXiv:2201.05641 [gr-qc]

    Article  ADS  Google Scholar 

  61. F. Yuan, R. Narayan, Hot accretion flows around black holes. Ann. Rev. Astron. Astrophys. 52, 529 (2014). https://doi.org/10.1146/annurev-astro-082812-141003. arXiv:1401.0586 [astro-ph.HE]

    Article  ADS  Google Scholar 

  62. I. Dymnikova, Spherically symmetric space-time with the regular de Sitter center. Int. J. Mod. Phys. D 12, 1015 (2003). https://doi.org/10.1142/S021827180300358X. arXiv:gr-qc/0304110

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

It is a pleasure to thank Xiao-Yan Chew and Yong-Zhuang Li for useful discussions. This work is supported by the Natural Science Research Project of Colleges and Universities in Jiangsu Province (21KJB140001) and Natural Science Foundation of Jiangsu Province (BK20220642).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zi-Liang Wang.

Appendices

Appendix 1: Review of the de Sitter–Schwarzschild spacetime

The de Sitter–Schwarzschild spacetime was considered to be a solution of Einstein field equations with the following density profile [6]

$$\begin{aligned} \rho (r)=\frac{3}{8\pi r_0^2} \exp \left( -\frac{r^3}{r_0^2 r_g}\right) \,. \end{aligned}$$
(42)

One could define the mass function as

$$\begin{aligned} \mathcal {M}(r)=4\pi \int _{0}^{r} \rho (x)x^2\textrm{d}x\,, \end{aligned}$$
(43)

with which the metric (1) could be written as

$$\begin{aligned} -g_{00}=g_{11}^{-1}= 1-2\mathcal {M}/r\,. \end{aligned}$$
(44)

Depending on the ratio of \(r_g/r_0\), the metric (1) can describe either a black hole or a gravitational object without an event horizon. In the case where there is no event horizon, the object is referred to as a G-lump, a term coined by Dymnikova [62]. For a given \(r_0\), the critical value of \(r_{g.\textrm{cr}}\) could be found by solving the following equations

$$\begin{aligned} g_{00}(r_{\textrm{cr}})=0 \,, \end{aligned}$$
(45a)
$$\begin{aligned} g_{00}'\Big | _{r=r_{\textrm{cr}}}=0\,, \end{aligned}$$
(46b)

where the prime denotes the derivative with respect to r and where \(r_{\textrm{cr}}\) is location of the horizon. Equation (A4) reduce to

$$\begin{aligned} r_{\textrm{cr}}^2/r_0^2&=1/3+\ln (3r_{\textrm{cr}}^2/r_0^2) \,, \end{aligned}$$
(47a)
$$\begin{aligned} r_{g.\textrm{cr}}&=\frac{r_{\textrm{cr}}^3/r_0^3}{\ln (3r_{\textrm{cr}}^2/r_0^2)}\,. \end{aligned}$$
(48b)

The numerical physical solution for this equation yields \(r_{\textrm{cr}}\approx 1.49571 r_0\) and \(r_{g.\textrm{cr}}\approx 1.75759 r_0\). For \(r_g>r_{g.\textrm{cr}}\), the metric (1) describes a black hole with two event horizons and these two horizons degenerate at \(r_g=r_{g.\textrm{cr}}\). For \(r_g<r_{g.\textrm{cr}}\), the metric describes the G-lump. Examples of different de Sitter–Schwarzschild metric are shown in Fig. 12.

Fig. 12
figure 12

\({t-t}\) component of de Sitter–Schwarzschild metric for different ratio \(r_g/r_0\)

Appendix 2: Geodesics of de Sitter–Schwarzschild black hole

For a static spherically symmetric metric which has the form:

$$\begin{aligned} \textrm{d}s^2=-B(r)\textrm{d}t^2 + B(r)^{-1}\textrm{d}r^2+r^2(\textrm{d}\theta ^2+\sin ^2\theta \textrm{d}\phi ^2)\,, \end{aligned}$$
(49)

the static Killing vector field \((\partial /\partial t)^{\mu }\) and the rotational Killing vector field \((\partial /\partial \phi )^{\mu }\) yield the following constants of the motion for geodesics, respectively:

$$\begin{aligned} E&=-g_{\mu \nu }\left( \frac{\partial }{\partial t}\right) ^{\mu }\left( \frac{\partial }{\partial \lambda }\right) ^{\nu }\,, \end{aligned}$$
(50a)
$$\begin{aligned} J&=g_{\mu \nu }\left( \frac{\partial }{\partial \phi }\right) ^{\mu }\left( \frac{\partial }{\partial \lambda }\right) ^{\nu }\,, \end{aligned}$$
(51b)

where \(\lambda \) being the proper time for massive particle or the affine parameter for massless particle. Without loss of generality, we shall restrict our attention to the equatorial geodesics, i.e., \(\theta =\pi /2\).

With the help of Eq. (B2), the geodesic equations

$$\begin{aligned} \frac{\textrm{d}^2x^{\mu }}{\textrm{d}\lambda ^2} +\Gamma ^{\mu }_{\rho \sigma }\frac{\textrm{d}x^{\rho }}{\textrm{d}\lambda }\frac{\textrm{d}x^{\sigma }}{\textrm{d}\lambda }=0 \end{aligned}$$
(52)

can be simplified to

$$\begin{aligned} \frac{E}{B(r)}&=\frac{\textrm{d}t}{\textrm{d}\lambda } \,, \end{aligned}$$
(53)
$$\begin{aligned} \frac{E^2}{2}&=\frac{1}{2}\left( \frac{\textrm{d}r}{\textrm{d}\lambda }\right) ^2 +\frac{B(r)}{2} \left( \frac{J^2 }{r^2}+N \right) \,, \end{aligned}$$
(54)
$$\begin{aligned} \frac{J}{r^2}&=\frac{\textrm{d}\phi }{\textrm{d}\lambda }\,, \end{aligned}$$
(55)

with constant \(N=0\) for a massless particle and \(N=1\) for a massive particle.

Note that Eq. (B4b) has the same form of the equation for a particle with unit effective mass and energy \(E^2/2\) moving in a one-dimensional effective potential

$$\begin{aligned} V_{\textrm{eff}}=\frac{B(r)}{2} \left( \frac{J^2 }{r^2}+N \right) \,. \end{aligned}$$
(56)

Combining Eqs. (B4b) and (B4c), we obtain

$$\begin{aligned} \left( \frac{\textrm{d}r}{\textrm{d}\phi }\right) ^2-\frac{E^2 r^4}{J^2}+B(r)\left( r^2+\frac{Nr^4}{J^2}\right) =0\,. \end{aligned}$$
(57)
Fig. 13
figure 13

Effective potential for massless particles in de Sitter–Schwarzschild spacetime with various values of \(r_g\)

Fig. 14
figure 14

Left panel: Effective potential for massive particles with angular momentum \(J=\sqrt{12}M\) in de Sitter–Schwarzschild spacetime, considering various values of \(r_g/r_0\). For comparison purposes, we also include the corresponding results for the Schwarzschild spacetime, represented by dashed line. All these effective potentials have a local minimal at \(r\approxeq 6M\), which corresponds to a stable circular orbits. Right panel: Effective potential for massive particles with different values of angular momentum J in a de-SBH with \(r_g/r_0=1.76\)

For null geodesics (\(N=0\)), the effective potential is given by

$$\begin{aligned} V_{\mathrm{eff-null}}=\frac{J^2 B(r) }{2r^2}\,. \end{aligned}$$
(58)

For a de-SBH, we have

$$\begin{aligned} B(r)=1-\frac{r_g}{r} \left( 1-\mathrm{{e}} ^{-r^3/r_0^2 r_g}\right) \,. \end{aligned}$$
(59a)

The equation for the effective potential and \({\textrm{d}r}/{\textrm{d}\phi }\) are given by

$$\begin{aligned} V_{\mathrm{eff-null}} =&\frac{J^2}{2r^2}-\frac{J^2r_g}{2r^3}+\frac{J^2r_g}{2r^3}\mathrm{{e}} ^{-r^3/r_0^2 r_g}\,, \end{aligned}$$
(60b)
$$\begin{aligned} 0=&\left( \frac{\textrm{d}r}{\textrm{d}\phi }\right) ^2-\frac{E^2 r^4}{J^2}+r^2-r_g r\left( 1-\mathrm{{e}} ^{-r^3/r_0^2 r_g}\right) \,, \end{aligned}$$
(61c)

which are Eqs. (5) and (7), respectively. Figure 13 show the effective potential for massless particles in de Sitter–Schwarzschild spacetime.

For timelike geodesics, \(N=1\), and the effective potential of a de-SBH is given by

$$\begin{aligned} V_{\mathrm{eff-massive}} =&\frac{J^2}{2r^2}-\frac{J^2r_g}{2r^3}+\frac{J^2r_g}{2r^3}\mathrm{{e}} ^{-r^3/r_0^2 r_g}+\frac{1}{2}-\frac{r_g}{2r}+\frac{r_g}{2r}\mathrm{{e}} ^{-r^3/r_0^2 r_g}\,. \end{aligned}$$
(62)

Examples of the effective potential are plotted in Fig. 14. The location of the stable circular orbits can be denoted by \(r_{\textrm{SCO}}\) (\(r_{\textrm{SCO}}>r_{h}\)), which corresponds to the local minimal of the effective potential outside the event horizon. Note that \(r_{\textrm{SCO}}\) is J dependent, and the minimal \(r_{\textrm{SCO}}\) gives the location of the innermost stable circular orbits \(r_{\textrm{ISCO}}\). The innermost stable circular orbits for de-SBHs is nearly equal to that of the SBH, i.e., \(r_{\textrm{ISCO}}\approxeq 6\,M\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, ZL. Shadows and rings of a de Sitter–Schwarzschild black hole. Eur. Phys. J. Plus 138, 1131 (2023). https://doi.org/10.1140/epjp/s13360-023-04756-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04756-x

Navigation