Skip to main content
Log in

A tuberculosis model incorporating the impact of information, saturated treatment and multiple reinfections

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This study investigates a novel tuberculosis (TB) model by integrating key factors that contribute to the spread of TB, such as endogenous reactivation, reinfection of recovered individuals, slow-fast progression of TB via non-monotonic information-induced incidence term, saturation in treatment function, and exogenous reinfection. The mathematical analysis of the model is carried out, and both transcritical and backward bifurcation are obtained conditionally, which infers that \({\mathcal {R}}_0<1\) is not sufficient for TB eradication. The combined impact of reinfections and treatment saturation on backward bifurcation is illustrated, along with the presence of exogenous reinfection. Further analysis shows that the model system exhibits interesting rich and complex nonlinear dynamics, such as bistability, multistability, Hopf bifurcation, and Hopf–Hopf bifurcation (stability switches). Analytical results are further explored and supplemented with numerical findings. The model system is fitted with real-time data of India and Turkey. It is observed that our model fits well and is reasonably accurate for short-term prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Data Availability Statement

Our Manuscript has no associated data.

References

  1. B.R. Bloom, Tuberculosis: pathogenesis, protection, and control (ASM Press, Washington, 1994)

    Book  Google Scholar 

  2. S. Saha, A. Kumar, K. Saurabh, S.H. Shankar, A. Kashyap, N. Nischal, A. Biswas, N. Wig et al., Current status of treatment of latent tuberculosis infection in India. Indian J. Med. Sci. 71(2), 54–59 (2020)

    Article  Google Scholar 

  3. Who, global tuberculosis report 2021 (2021). https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2021

  4. T. Lillebaek, A. Dirksen, I. Baess, B. Strunge, V.Ø. Thomsen, Å.B. Andersen, Molecular evidence of endogenous reactivation of mycobacterium tuberculosis after 33 years of latent infection. J. Infect. Dis. 185(3), 401–404 (2002)

    Article  Google Scholar 

  5. V. Deepak, S.R. Bhoi, R. Asmita, Latent tuberculosis in India: an overview. Cureus 15(3), 1–7 (2023)

    Google Scholar 

  6. Z. Feng, C. Castillo-Chavez, A.F. Capurro, A model for tuberculosis with exogenous reinfection. Theor. Popul. Biol. 57(3), 235–247 (2000)

    Article  Google Scholar 

  7. S. Khajanchi, D.K. Das, T.K. Kar, Dynamics of tuberculosis transmission with exogenous reinfections and endogenous reactivation. Physica A 497, 52–71 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  8. I.M. Wangari, L. Stone, Backward bifurcation and hysteresis in models of recurrent tuberculosis. PloS One 13(3), e0194256 (2018)

    Article  Google Scholar 

  9. D.K. Das, S. Khajanchi, T.K. Kar, Transmission dynamics of tuberculosis with multiple re-infections. Chaos Solitons Fractals 130, 109450 (2020)

    Article  MathSciNet  Google Scholar 

  10. M. Zignol, A. Wright, E. Jaramillo, P. Nunn, M.C. Raviglione, Patients with previously treated tuberculosis no longer neglected. Clin. Infect. Dis. 44(1), 61–64 (2007)

    Article  Google Scholar 

  11. R.E. Chaisson, G.J. Churchyard, Recurrent tuberculosis: relapse, reinfection, and HIV. J Infect Dis. 201(5), 653–655 (2010)

    Article  Google Scholar 

  12. S. Verver, R.M. Warren, N. Beyers, M. Richardson, G.D. Van Der Spuy, M.W. Borgdorff, D.A. Enarson, M.A. Behr, P.D. Van Helden, Rate of reinfection tuberculosis after successful treatment is higher than rate of new tuberculosis. Am. J. Respir. Crit. Care Med. 171(12), 1430–1435 (2005)

    Article  Google Scholar 

  13. M.-L. Lambert, E. Hasker, A. Van Deun, D. Roberfroid, M. Boelaert, P. Van der Stuyft, Recurrence in tuberculosis: relapse or reinfection? Lancet Infect. Dis 3(5), 282–287 (2003)

    Article  Google Scholar 

  14. H.M. Yang, S.M. Raimundo, Assessing the effects of multiple infections and long latency in the dynamics of tuberculosis. Theor. Biol. Med. Model. 7, 1–37 (2010)

    Article  Google Scholar 

  15. M.G.M. Gomes, A.O. Franco, M.C. Gomes, G.F. Medley, The reinfection threshold promotes variability in tuberculosis epidemiology and vaccine efficacy. Proc. R. Soc. Lond. Ser. B Biol. Sci. 271(1539), 617–623 (2004)

    Article  Google Scholar 

  16. M. Herrera, P. Bosch, M. Nájera, X. Aguilera et al., Modeling the spread of tuberculosis in semiclosed communities. Comput. Math. Methods Med. (2013)

  17. B.I. Omede, O.J. Peter, W. Atokolo, B. Bolaji, T.A. Ayoola, A mathematical analysis of the two-strain tuberculosis model dynamics with exogenous re-infection. Healthc. Anal. 4, 100266 (2023)

    Article  Google Scholar 

  18. I.A. Baba, R.A. Abdulkadir, P. Esmaili, Analysis of tuberculosis model with saturated incidence rate and optimal control. Phys. A Stat. Mech. Appl. 540, 123237 (2020)

    Article  MathSciNet  Google Scholar 

  19. V. Capasso, G. Serio, A generalization of the Kermack–McKendrick deterministic epidemic model. Math. Biosci. 42(1–2), 43–61 (1978)

    Article  MathSciNet  Google Scholar 

  20. W. Liu, S.A. Levin, Y. Iwasa, Influence of nonlinear incidence rates upon the behavior of sirs epidemiological models. J. Math. Biol. 23(2), 187–204 (1986)

    Article  MathSciNet  Google Scholar 

  21. S. Ruan, W. Wang, Dynamical behavior of an epidemic model with a nonlinear incidence rate. J. Differ. Equ. 188(1), 135–163 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  22. D. Xiao, S. Ruan, Global analysis of an epidemic model with nonmonotone incidence rate. Math. Biosci. 208(2), 419–429 (2007)

    Article  MathSciNet  Google Scholar 

  23. A. Srivastava, P.K. Srivastava et al., Nonlinear dynamics of a SIRI model incorporating the impact of information and saturated treatment with optimal control. Eur. Phys. J. Plus 137(9), 1–25 (2022)

    Article  Google Scholar 

  24. I.A. Baba, E. Hincal, Global stability analysis of two-strain epidemic model with bilinear and non-monotone incidence rates. Eur. Phys. J. Plus 132, 1–10 (2017)

    Article  Google Scholar 

  25. A. Meskaf, O. Khyar, J. Danane, K. Allali, Global stability analysis of a two-strain epidemic model with non-monotone incidence rates. Chaos Solitons Fractals 133, 109647 (2020)

    Article  MathSciNet  Google Scholar 

  26. World Health Organization et al., TB/HIV: A Clinical Manual. Number WHO/HTM/TB/2004.329. World Health Organization (2004)

  27. W. Wang, Backward bifurcation of an epidemic model with treatment. Math. Biosci. 201(1–2), 58–71 (2006)

    Article  MathSciNet  Google Scholar 

  28. X. Zhang, X. Liu, Backward bifurcation of an epidemic model with saturated treatment function. J. Math. Anal. Appl. 348(1), 433–443 (2008)

    Article  MathSciNet  Google Scholar 

  29. G.-H. Li, Y.-X. Zhang, Dynamic behaviors of a modified sir model in epidemic diseases using nonlinear incidence and recovery rates. PLoS ONE 12(4), e0175789 (2017)

    Article  Google Scholar 

  30. J.K. Ghosh, U. Ghosh, M.H.A. Biswas, S. Sarkar, Qualitative analysis and optimal control strategy of an sir model with saturated incidence and treatment. Differ. Equ. Dyn. Syst. 31(1), 1–15 (2019)

    MathSciNet  Google Scholar 

  31. A. Yadav, P.K. Srivastava, The impact of information and saturated treatment with time delay in an infectious disease model. J. Appl. Math. Comput. 66(1), 277–305 (2021)

    Article  MathSciNet  Google Scholar 

  32. F. Sulayman, F.A. Abdullah, Analysis of a tuberculosis infection model considering the influence of saturated recovery (treatment). Complexity 2021, 1805651 (2021)

    Article  Google Scholar 

  33. L. Xuejuan, S. Wang, S. Liu, J. Li, An sei infection model incorporating media impact. Math. Biosci. Eng. 14(5 &6), 1317 (2017)

    MathSciNet  Google Scholar 

  34. P. Van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180(1–2), 29–48 (2002)

    Article  MathSciNet  Google Scholar 

  35. N. Chitnis, J.M. Hyman, J.M. Cushing, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model. Bull. Math. Biol. 70(5), 1272–1296 (2008)

    Article  MathSciNet  Google Scholar 

  36. C. Castillo-Chavez, Z. Feng, W. Huang et al., On the computation of r0 and its role in global stability. IMA Vol. Math. Its Appl. 125, 229–250 (2002)

    Google Scholar 

  37. M.Y. Li, J.S. Muldowney, A geometric approach to global-stability problems. SIAM J. Math. Anal. 27(4), 1070–1083 (1996)

    Article  MathSciNet  Google Scholar 

  38. W.A. Coppel, Stability and asymptotic behavior of differential equations. Heath (1965)

  39. J.S. Muldowney, Compound matrices and ordinary differential equations. Rocky Mt. J. Math. 20(4), 857–872 (1990)

    Article  MathSciNet  Google Scholar 

  40. H.I. Freedman, S. Ruan, M. Tang, Uniform persistence and flows near a closed positively invariant set. J. Dyn. Differ. Equ. 6(4), 583–600 (1994)

    Article  MathSciNet  Google Scholar 

  41. C. Castillo-Chavez, B. Song, Dynamical models of tuberculosis and their applications. Math. Biosci. Eng. 1(2), 361 (2004)

    Article  MathSciNet  Google Scholar 

  42. W.-M. Liu, Criterion of hopf bifurcations without using eigenvalues. J. Math. Anal. Appl. 182(1), 250–256 (1994)

    Article  MathSciNet  Google Scholar 

  43. T.K. Kar, P.K. Mondal, Global dynamics of a tuberculosis epidemic model and the influence of backward bifurcation. J. Math. Model. Algorithms 11, 433–459 (2012)

    Article  MathSciNet  Google Scholar 

  44. Y. Ucakan, S. Gulen, K. Koklu, Analysing of tuberculosis in Turkey through SIR, SEIR and BSEIR mathematical models. Math. Comput. Model. Dyn. Syst. 27(1), 179–202 (2021)

    Article  MathSciNet  Google Scholar 

  45. Macrotrends, Turkey life expectancy 1950–2023. https://www.macrotrends.net/countries/TUR/turkey/life-expectancy

  46. Nikshay, National Tuberculosis Elimination Programme. https://reports.nikshay.in/Reports/TBNotification

  47. Macrotrends, Agra (India) population 1950-2023. https://www.macrotrends.net/cities/21151/agra/population

  48. Macrotrends, India life expectancy 1950–2023. https://www.macrotrends.net/countries/IND/india/life-expectancy

  49. Macrotrends, Lucknow (India) population 1950–2023. https://www.macrotrends.net/cities/21318/lucknow/population

  50. Ayodhya (India), population. https://www.census2011.co.in/census/district/548-faizabad.html (2021)

Download references

Acknowledgements

AS acknowledges financial support from the Indian Institute of Technology Patna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant K. Srivastava.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, A., Srivastava, P.K. A tuberculosis model incorporating the impact of information, saturated treatment and multiple reinfections. Eur. Phys. J. Plus 138, 1156 (2023). https://doi.org/10.1140/epjp/s13360-023-04754-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04754-z

Navigation