Skip to main content
Log in

An evolutionary-based neural network approach to investigate heat and mass transportation by using non-Fourier double-diffusion theories for Prandtl nanofluid under Hall and ion slip effects

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Achieving precise predictions and classifications with artificial neural networks (ANNs) while minimizing the consumption of computational resources and time continues to be a substantial objective in the realm of scientific inquiry. The primary objective of this research is to create ANNs that achieve a harmonious equilibrium between precision and computational speed, thereby enabling their implementation in a wide array of contexts. This study aims to examine the characteristics of Prandtl nanofluids using ANN-HCS-PNF, an innovative computational framework that integrates artificial neural networks and a hybridized cuckoo search method. The aforementioned framework is utilized in conjunction with the Cattaneo–Christov double heat flow model, with Hall and ion slip effects also taken into account. The central argument of this manuscript pertains to the examination of concentration, velocity, and temperature profiles in the flow of Prandtl nanofluid using the Cattaneo–Christov double heat flux model. This investigation focuses specifically on the consequences of Hall and ion slip effects. In order to explore the complexities of flow dynamics, scientists utilize an unsupervised ANN approach. The process entails converting the partial differential equations that regulate the flow of Prandtl nanofluids into a set of ordinary differential equations. Following this, the transformed equations are utilized in the construction of a reference dataset that supports the evolutionary methodology. The complex nanofluid flow velocities demonstrate a clear and direct relationship with non-dimensional parameters, such as the flexible number and Prandtl fluid parameter, in addition to the Hall and ion slip parameters. Temperature profiles demonstrate a strong correlation with the Brownian parameter and ion slip parameter as they increase, while the Prandtl number and thermal parameter exhibit an inverse correlation. In a similar fashion, the concentration profile exhibits an inverse correlation with the Hall parameter, Schmidt number, and concentration relaxation parameters, but a direct correlation with the Hartmann number. This study enhances the advancement of computationally efficient ANN models utilized in the analysis of complex fluid dynamics, thereby creating novel opportunities for their implementation across diverse domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

No data associated in the manuscript.

Abbreviations

\(\tilde{u},\tilde{v},\tilde{w}\,\left[ {{\text{m}}/{\text{s}}} \right]\) :

Velocity components

\(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{x} ,\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{y} ,\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{z} \,\left[ {\text{m}} \right]\) :

Cartesian coordinates

\(\tilde{T},\tilde{T}_{\infty } ,\tilde{T}_{w}\) :

Fluid, ambient, and surface fluid temperature, respectively

\(\tilde{C},\tilde{C}_{\infty } ,\tilde{C}_{w}\) :

Fluid, ambient, and surface fluid concentration, respectively

\(\begin{gathered} k\left[ {{\text{W}}/\left( {{\text{m}} \cdot {\text{K}}} \right)} \right],\rho^{*} \left[ {{\text{kg/m}}^{3} } \right],\hfill \\ C_{p} \left[ {J/\left( {{\text{kg}} \cdot {\text{K}}} \right)} \right], q* = - k\nabla \tilde{T}\left[ {{\text{W}}/{\text{m}}^{2} } \right],J^{*} = \rho u. \end{gathered}\) :

Thermal conductivity, density, specific heat, and heat, mass flux and magnetic field, respectively

\(K^{ * * * } ,\,D^{ * * * }\) :

Thermal conductivity and molecular diffusivity, respectively

\(\nu ,\,\rho ,\,\mu\) :

Kinematic viscosity, fluid density, and dynamics viscosity, respectively

\(\alpha_{i} ,\,\alpha_{h} ,\,\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\sigma }\) :

Ion slip and Hall and electrical conductivity parameters, respectively

\(A,C,B = \left( {0,0,B_{0} } \right)\left[ {{\text{tesla }}\left( T \right)} \right]\) :

Material constants and magnetic field, respectively

\(\alpha * = K/\left( {\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{\rho } \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{c}_{p} } \right)_{f} ,\,K\left[ {{\text{m}}^{2} /{\text{s}}} \right]\) :

Thermal diffusivity and thermal conductivity, respectively

\(\left( {\rho C} \right)_{p} ,\,\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{D}_{\gamma } ,\,\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{D}_{T}\) :

Heat capacitance, Brownian, and thermophoretic diffusion coefficients, respectively

\(\beta_{1} = \frac{1}{\mu Ac},\,\beta_{2} = \frac{{bU_{w} }}{{2c^{2} v}}\) :

Prandtl fluid parameter, flexible number, respectively

\(({\text{Ha}})_{2} = \frac{{\sigma B_{0}^{2} }}{{a\rho_{f} }},\,\gamma = \frac{{h_{f} }}{k}\sqrt{\frac{v}{a}}\) :

Hartmann parameter, Biot number, respectively

\(\Pr = \frac{v}{{a^{ * } }},\,({\text{Ha}})_{2} = \frac{{\sigma B_{0}^{2} }}{{a\rho_{f} }},\) :

Prandtl number, Hartmann parameter, respectively

\({\text{Nb}} = \frac{{(\rho c)_{p} D_{B} C_{\infty } }}{{(\rho c)_{f} \nu }},\,{\text{Sc}} = \frac{v}{{D_{B} }},\alpha = \frac{b}{a}\) :

Brownian parameter, Schmidt number, ratio parameter

\({\text{Nt}} = \frac{{(\rho c)_{p} D_{T} (T_{f} - T_{\infty } )}}{{(\rho c)_{f} \nu T_{\infty } }},\) :

Thermophoretic parameter

\(\lambda_{1} = \gamma_{1}^{ * } a, \, \lambda_{2} = \gamma_{2}^{ * } a,\) :

Thermal and concentration relaxation parameters, respectively

\(\nabla ,\,\gamma_{1}^{ * } \left[ {\text{s}} \right],\,\gamma_{2}^{ * } \left[ {\text{s}} \right].\) :

Laplace operator, thermal and solutal relaxation times

\(f^{\prime } ,\,g^{\prime }\) :

Velocities in \(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{x} ,\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\frown}$}}{y}\) space coordinates, respectively

\(\theta ,\phi\) :

Dimensionless temperature and concentration, respectively

CS, HCS:

Cuckoo search, hybridized cuckoo search

PNF, HM:

Prandtl nanofluid, Hydromagnetic, respectively

ANNs, NNF:

Artificial neural networks, non-Newtonian fluid

CC-model, H–I effect:

Cattaneo–Christov model, Hall and ion effect, respectively

References

  1. S. Faghiri, S. Akbari, M.B. Shafii, K. Hosseinzadeh, Hydrothermal analysis of non-Newtonian fluid flow (blood) through the circular tube under prescribed non-uniform wall heat flux. Theor. Appl. Mech. Lett. 12(4), 100360 (2022)

    Article  Google Scholar 

  2. M.M. Gulzar, A. Aslam, M. Waqas, M.A. Javed, K. Hosseinzadeh, A nonlinear mathematical analysis for magneto-hyperbolic-tangent liquid featuring simultaneous aspects of magnetic field, heat source and thermal stratification. Appl. Nanosci. 10, 4513–4518 (2020)

    Article  ADS  Google Scholar 

  3. K. Hosseinzadeh, M.R. Mardani, M. Paikar, A. Hasibi, T. Tavangar, M. Nimafar, D.D. Ganji, M.B. Shafii, Investigation of second grade viscoelastic non-Newtonian nanofluid flow on the curve stretching surface in presence of MHD. Results Eng. 17, 100838 (2023)

    Article  Google Scholar 

  4. P.S. Reddy, A.J. Chamkha, Soret and Dufour effects on unsteady MHD heat and mass transfer from a permeable stretching sheet with thermophoresis and non-uniform heat generation/absorption. J. Appl. Fluid Mech. 9(5), 2443–2455 (2016)

    Google Scholar 

  5. K. Ramesh, M. Gnaneswara Reddy, M. Devakar, Biomechanical study of magnetohydrodynamic Prandtl nanofluid in a physiological vessel with thermal radiation and chemical reaction. Proc. Inst. Mech. Eng. Part N J. Nanomater. Nanoeng. Nanosyst. 232(4), 95–108 (2018)

    Google Scholar 

  6. R. Ellahi, A. Riaz, S. Nadeem, A theoretical study of Prandtl nanofluid in a rectangular duct through peristaltic transport. Appl. Nanosci. 4, 753–760 (2014)

    Article  ADS  Google Scholar 

  7. K. Sooppy Nisar, S. Bilal, I.A. Shah, M. Awais, I. Khan, P. Thonthong, HM flow of Prandtl nanofluid past cylindrical surface with chemical reaction and convective heat transfer aspects. Math. Probl. Eng. 2021, 1–16 (2021)

    Article  Google Scholar 

  8. M. Hamid, T. Zubair, M. Usman, Z.H. Khan, W. Wang, Natural convection effects on heat and mass transfer of slip flow of time-dependent Prandtl fluid. J. Comput. Des. Eng. 6(4), 584–592 (2019)

    Google Scholar 

  9. K.G. Kumar, N.G. Rudraswamy, B.J. Gireesha, Effects of mass transfer on MHD three dimensional flow of a Prandtl liquid over a flat plate in the presence of chemical reaction. Results Phys. 7, 3465–3471 (2017)

    Article  ADS  Google Scholar 

  10. W. Ibrahim, T. Anbessa, Three-dimensional MHD mixed convection flow of Casson nanofluid with HI slip effects. Math. Probl. Eng. 2020, 1–15 (2020)

    Google Scholar 

  11. J. Li, L. Zheng, L. Liu, MHD viscoelastic flow and heat transfer over a vertical stretching sheet with CCheat flux effects. J. Mol. Liq. 221, 19–25 (2016)

    Article  ADS  Google Scholar 

  12. S.A. Shehzad, F.M. Abbasi, T. Hayat, A. Alsaedi, CCheat flux model for Darcy-Forchheimer flow of an Oldroyd-B fluid with variable conductivity and non-linear convection. J. Mol. Liq. 224, 274–278 (2016)

    Article  Google Scholar 

  13. T. Hayat, S. Qayyum, S.A. Shehzad, A. Alsaedi, Cattaneo-Christov double-diffusion model for flow of Jeffrey fluid. J. Braz. Soc. Mech. Sci. Eng. 39, 4965–4971 (2017)

    Article  Google Scholar 

  14. M. Shoaib, M.A.Z. Raja, M.T. Sabir, S. Islam, Z. Shah, P. Kumam, H. Alrabaiah, Numerical investigation for rotating flow of MHD hybrid nanofluid with thermal radiation over a stretching sheet. Sci. Rep. 10(1), 18533 (2020)

    Article  Google Scholar 

  15. H. Bilal, H. Ullah, M. Fiza, S. Islam, M.A.Z. Raja, M. Shoaib, I. Khan, A Levenberg-Marquardt backpropagation method for unsteady squeezing flow of heat and mass transfer behaviour between parallel plates. Adv. Mech. Eng. 13(10), 16878140211040896 (2021)

    Article  Google Scholar 

  16. M. Shoaib, M.A.Z. Raja, M.T. Sabir, A.H. Bukhari, H. Alrabaiah, Z. Shah, P. Kumam, S. Islam, A stochastic numerical analysis based on hybrid NAR-RBFs networks nonlinear SITR model for novel COVID-19 dynamics. Comput. Methods Programs Biomed. 202, 105973 (2021)

    Article  Google Scholar 

  17. W. Waseem, M. Sulaiman, S. Islam, P. Kumam, R. Nawaz, M.A.Z. Raja, M. Farooq, M. Shoaib, A study of changes in temperature profile of porous fin model using cuckoo search algorithm. Alex. Eng. J. 59(1), 11–24 (2020)

    Article  Google Scholar 

  18. K. Nisar, Z. Sabir, M. Asif Zahoor Raja, A.A. Ag Ibrahim, J. JPC Rodrigues, S. Refahy Mahmoud, B.S. Chowdhry, M. Gupta, Artificial neural networks to solve the singular model with neumann–robin, dirichlet and neumann boundary conditions. Sensors 21(19), 6498 (2021)

    Article  ADS  Google Scholar 

  19. Z. Sabir, M.R. Ali, R. Sadat, Gudermannian neural networks using the optimization procedures of genetic algorithm and active set approach for the three-species food chain nonlinear model. J. Ambient. Intell. Humaniz. Comput. 14, 8913–8922 (2022)

    Article  Google Scholar 

  20. D. Dan, X. Yu, F. Han, B. Xu, Research on dynamic behavior and traffic management decision-making of suspension bridge after vortex-induced vibration event. Struct. Health Monit. 21(3), 872–886 (2022)

    Article  Google Scholar 

  21. N. Ullah, M.I. Asjad, H. Ur Rehman, A. Akgül, Construction of optical solitons of Radhakrishnan–Kundu–Lakshmanan equation in birefringent fibers. Nonlinear Eng. 11(1), 80–91 (2022)

    Article  ADS  Google Scholar 

  22. K.L. Geng, B.W. Zhu, Q.H. Cao, C.Q. Dai, Y.Y. Wang, Nondegenerate soliton dynamics of nonlocal nonlinear Schrödinger equation. Nonlinear Dyn. 111(17), 16483–16496 (2023)

    Article  Google Scholar 

  23. D. Lin, K.R. Dong, J.R. Zhang, Y.J. Shen, Effect of near-symmetric potentials on nonlinear modes for higher-order generalized Ginzburg-Landau model. Commun. Theor. Phys. 74(12), 125001 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  24. Q. Zhou, H. Triki, J. Xu, Z. Zeng, W. Liu, A. Biswas, Perturbation of chirped localized waves in a dual-power law nonlinear medium. Chaos Solitons Fractals 160, 112198 (2022)

    Article  MathSciNet  Google Scholar 

  25. H. Zhu, L. Chen, Vector dark-bright second-order rogue wave and triplets for a (3+ 1)-dimensional CNLSE with the partially nonlocal nonlinearity. Nonlinear Dyn. 111(5), 4673–4682 (2023)

    Article  Google Scholar 

  26. R.R. Wang, Y.Y. Wang, C.Q. Dai, Influence of higher-order nonlinear effects on optical solitons of the complex Swift-Hohenberg model in the mode-locked fiber laser. Opt. Laser Technol. 152, 108103 (2022)

    Article  Google Scholar 

  27. Y.X. Chen, X. Xiao, Vector soliton pairs for a coupled nonautonomous NLS model with partially nonlocal coupled nonlinearities under the external potentials. Nonlinear Dyn. 109(3), 2003–2012 (2022)

    Article  Google Scholar 

  28. W.B. Bo, R.R. Wang, Y. Fang, Y.Y. Wang, C.Q. Dai, Prediction and dynamical evolution of multipole soliton families in fractional Schrödinger equation with the PT-symmetric potential and saturable nonlinearity. Nonlinear Dyn. 111(2), 1577–1588 (2023)

    Article  Google Scholar 

  29. T. Okabe, K. Somaya, Development of ionic liquid circulation system in high-vacuum chamber for semiconductor device fabrication. Vacuum 207, 111562 (2023)

    Article  ADS  Google Scholar 

  30. X.K. Wen, J.H. Jiang, W. Liu, and C.Q. Dai, 2023. Abundant vector soliton prediction and model parameter discovery of the coupled mixed derivative nonlinear Schrödinger equation. Nonlinear Dyn. 1–13

  31. B. Li, Z. Eskandari, Dynamical analysis of a discrete-time SIR epidemic model. J. Franklin Inst. 360(12), 7989–8007 (2023)

    Article  MathSciNet  Google Scholar 

  32. Q. He, X. Zhang, P. Xia, C. Zhao, S. Li, A comparison research on dynamic characteristics of chinese and american energy prices. J. Glob. Inf. Manag. (JGIM) 31(1), 1–16 (2023)

    Article  Google Scholar 

  33. H.D. Qu, X. Liu, X. Lu, M. ur Rahman, Z.H. She, Neural network method for solving nonlinear fractional advection-diffusion equation with spatiotemporal variable-order. Chaos Solitons Fractals 156, 111856 (2022)

    Article  MathSciNet  Google Scholar 

  34. B. Li, T. Zhang, C. Zhang, Investigation of financial bubble mathematical model under fractal-fractional Caputo derivative. Fractals (fractals) 31(05), 1–13 (2023)

    Google Scholar 

  35. M. ur Rahman, Generalized fractal–fractional order problems under non-singular Mittag-Leffler kernel. Results Phys. 35, 105346 (2022)

    Article  Google Scholar 

  36. Q. He, P. Xia, C. Hu, B. Li, Public information, actual intervention and inflation expectations. Transform. Bus. Econ., 21. (2022)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waseem.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habib, S., Islam, S., Khan, Z. et al. An evolutionary-based neural network approach to investigate heat and mass transportation by using non-Fourier double-diffusion theories for Prandtl nanofluid under Hall and ion slip effects. Eur. Phys. J. Plus 138, 1122 (2023). https://doi.org/10.1140/epjp/s13360-023-04740-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04740-5

Navigation