Skip to main content
Log in

Vector dark-bright second-order rogue wave and triplets for a (3+1)-dimensional CNLSE with the partially nonlocal nonlinearity

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The excitation management of rogue waves were extensively reported, and yet the excitation management of different vector high-order rogue wave structures for two components is hardly studied. Our work aims to investigate the excitation management of vector dark-bright second-order rogue wave and triplets in the partially nonlocal nonlinear case. A variable-coefficient (3+1)-dimensional coupled nonlinear Schrödinger equation(CNLSE) with partially nonlocal nonlinearity under a parabolic external potential is erected a relation to the constant-coefficient (1+1)-dimensional CNLSE by means of a reduction transformation. Considering solutions of constant-coefficient CNLSE by means of the nonrecursive Darboux transformation method, analytical vector dark-bright second-order rogue wave and triplet solutions are derived. The excitation management of these rogue waves and triplets including fully, maximally and initially excited shapes is deduced in the exponential management system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Zhang, R.F., Li, M.C., Albishari, M., Zheng, F.C., Lan, Z.Z.: Generalized lump solutions, classical lump solutions and rogue waves of the (2+1)-dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada-like equation. Appl. Math. Comput. 403, 126201 (2021)

    MATH  Google Scholar 

  2. Zhang, R.F., Bilige, S., Chaolu, T.: Fractal solitons, arbitrary function solutions, exact periodic wave and breathers for a nonlinear partial differential equation by using bilinear neural network method. J. Sys. Sci. Complex. 34, 122–139 (2021)

    MATH  Google Scholar 

  3. Zhang, R.F., Bilige, S., Liu, J.G., Li, M.C.: Bright-dark solitons and interaction phenomenon for p-gBKP equation by using bilinear neural network method. Phys. Scr. 96, 025224 (2021)

    Google Scholar 

  4. Fang, Y., Wu, G.Z., Wen, X.K., Wang, Y.Y., Dai, C.Q.: Predicting certain vector optical solitons via the conservation-law deep-learning method. Opt. Laser Technol. 155, 108428 (2022)

    Google Scholar 

  5. Cao, Q.H., Dai, C.Q.: Symmetric and anti-symmetric solitons of the fractional second- and third-order nonlinear Schrodinger equation. Chin. Phys. Lett. 38, 090501 (2021)

    Google Scholar 

  6. Wazwaz, A.M.: A variety of multiple-soliton solutions for the integrable (4+1)-dimensional Fokas equation. Waves Random Complex Media 31, 46–56 (2021)

    Google Scholar 

  7. Geng, K.L., Mou, D.S., Dai, C.Q.: Nondegenerate solitons of 2-coupled mixed derivative nonlinear Schrodinger equations. Nonlinear Dyn (2022). https://doi.org/10.1007/s11071-022-07833-5

    Article  Google Scholar 

  8. Wang, B.H., Wang, Y.Y., Dai, C.Q., Chen, Y.X.: Dynamical characteristic of analytical fractional solitons for the space-time fractional Fokas–Lenells equation. Alexandria Eng. J. 59, 4699–4707 (2020)

    Google Scholar 

  9. Dai, C.Q., Wang, Y.Y.: Coupled spatial periodic waves and solitons in the photovoltaic photorefractive crystals. Nonlinear Dyn. 102, 1733–1741 (2020)

    Google Scholar 

  10. Zhang, R.F., Li, M.C., Gan, J.Y., Li, Q., Lan, Z.Z.: Novel trial functions and rogue waves of generalized breaking soliton equation via bilinear neural network method. Chaos Solitons Fractals 154, 111692 (2022)

    MATH  Google Scholar 

  11. Zhang, R.F., Li, M.C.: Bilinear residual network method for solving the exactly explicit solutions of nonlinear evolution equations. Nonlinear Dyn. 108, 521–531 (2022)

    Google Scholar 

  12. Zhang, R.F., Bilige, S.: Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to p-gBKP equation. Nonlinear Dyn. 95, 3041–3048 (2019)

    MATH  Google Scholar 

  13. Wazwaz, A.M., Hammad, M., El-Tantawy, S.A.: Bright and dark optical solitons for (3 + 1)-dimensional hyperbolic nonlinear Schrodinger equation using a variety of distinct schemes. Optik 270, 170043 (2022)

    Google Scholar 

  14. Wazwaz, A.M., Kaur, L.: Optical soliton solutions of variable coefficient Biswas–Milovic (BM) model comprising Kerr law and damping effect. Optik 266, 169617 (2022)

    Google Scholar 

  15. Wazwaz, A.M., Albalawi, W., El-Tantawy, S.A.: Optical envelope soliton solutions for coupled nonlinear Schrodinger equations applicable to high birefringence fibers. Optik 255, 168673 (2022)

    Google Scholar 

  16. Bo, W.B., Wang, R.R., Fang, Y., Wang, Y.Y., Dai, C.Q.: Prediction and dynamical evolution of multipole soliton families in fractional Schrodinger equation with the PT-symmetric potential and saturable nonlinearity. Nonlinear Dyn. (2022). https://doi.org/10.1007/s11071-022-07884-8

    Article  Google Scholar 

  17. Zhu, H.P., Chen, H.Y.: Parameter modulation of periodic waves and solitons in metamaterials with higher-order dispersive and nonlinear effects. Nonlinear Dyn. 104, 1545–1554 (2021)

    Google Scholar 

  18. Wen, X.K., Wu, G.Z., Liu, W., Dai, C.Q.: Dynamics of diverse data-driven solitons for the three-component coupled nonlinear Schrodinger model by the MPS-PINN method. Nonlinear Dyn. 109, 3041–3050 (2022)

    Google Scholar 

  19. Fang, Y., Wu, G.Z., Wang, Y.Y., Dai, C.Q.: Data-driven femtosecond optical soliton excitations and parameters discovery of the high-order NLSE using the PINN. Nonlinear Dyn. 105, 603–616 (2021)

    Google Scholar 

  20. Kong, L.Q., Dai, C.Q.: Some discussions about variable separation of nonlinear models using Riccati equation expansion method. Nonlinear Dyn. 81, 1553–1561 (2015)

    Google Scholar 

  21. Dai, C.Q., Wang, Y.Y., Fan, Y., Zhang, J.F.: Interactions between exotic multi-valued solitons of the (2+1)-dimensional Korteweg-de Vries equation describing shallow water wave. Appl. Math. Model. 80, 506–515 (2020)

    MATH  Google Scholar 

  22. Dai, C.Q., Fan, Y., Wang, Y.Y.: Three-dimensional optical solitons formed by the balance between different-order nonlinearities and high-order dispersion/diffraction in parity-time symmetric potentials. Nonlinear Dyn. 98, 489–499 (2019)

    MATH  Google Scholar 

  23. Wang, R.R., Wang, Y.Y., Dai, C.Q.: Influence of higher-order nonlinear effects on optical solitons of the complex Swift-Hohenberg model in the mode-locked fiber laser. Opt. Laser Tech. 152, 108103 (2022)

    Google Scholar 

  24. Dai, C.Q., Zhou, G.Q., Chen, R.P., Lai, X.J., Zheng, J.: Vector multipole and vortex solitons in two-dimensional Kerr media. Nonlinear Dyn. 88, 2629–2635 (2017)

    Google Scholar 

  25. Kharif, C., Pelinovsky, E., Slunyaev, A.: Rogue Waves in the Ocean. Springer, Berlin (2009)

    MATH  Google Scholar 

  26. Yan, Z.Y.: Financial rogue waves. Commun. Theor. Phys. 54, 947 (2010)

    MATH  Google Scholar 

  27. Zhang, R.F., Li, M.C., Yin, H.M.: Rogue wave solutions and the bright and dark solitons of the (3+1)-dimensional Jimbo–Miwa equation. Nonlinear Dyn. 103, 1071–1079 (2021)

    Google Scholar 

  28. Chabchoub, A., Hoffmann, N.P., Akhmediev, N.: Rogue wave observation in a water wave tank. Phys. Rev. Lett. 106, 204502 (2011)

    Google Scholar 

  29. Chabchoub, A., Hoffmann, N., Branger, H., Kharif, C., Akhmediev, N.: Experiments on wind-perturbed rogue wave hydrodynamics using the Peregrine breather model. Phys. Fluids 25, 101704 (2013)

    Google Scholar 

  30. Solli, D.R., Ropers, C., Koonath, P., Jalali, B.: Optical rogue waves. Nature 450, 1054–1057 (2007)

    Google Scholar 

  31. Lecaplain, C., Grelu, P., Soto-Crespo, J.M., Akhmediev, N.: Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser. Phys. Rev. Lett. 108, 233901 (2012)

    Google Scholar 

  32. Akhmediev, N., Ankiewicz, A., Soto-Crespo, J.M.: Rogue waves and rational solutions of the nonlinear Schrodinger equation. Phys. Rev. E 80, 026601 (2009)

    Google Scholar 

  33. Ankiewicz, A., Kedziora, D.J., Akhmediev, N.: Rogue wave triplets. Phys. Lett. A 375, 2782–2785 (2011)

    MATH  Google Scholar 

  34. Liu, J.R., Ma, W.X., Duan, Q.H.: A nonlinear evolutionary equation modelling a dockless bicycle-sharing system. J. Amb. Intel. Hum. Comput. (2022). https://doi.org/10.1007/s12652-022-03700-8

    Article  Google Scholar 

  35. Xi, C.J., Dong, J.X.: Adaptive neural network-based control of uncertain nonlinear systems with time-varying full-state constraints and input constraint. Neuocomput. 357, 108–115 (2019)

    Google Scholar 

  36. Peng, Z.W., Yu, W.X., Wang, J.N., Wang, J., Chen, Y., He, X.K., Jiang, D.: Dynamic analysis of seven-dimensional fractional-order chaotic system and its application in encrypted communication. J. Amb. Intel. Hum. Comput. 11, 5399–5417 (2020)

    Google Scholar 

  37. Chabchoub, A., Fink, M.: Time-reversal generation of rogue waves. Phys. Rev. Lett. 112, 124101 (2014)

    Google Scholar 

  38. Chabchoub, A., Akhmediev, N.: Observation of rogue wave triplets in water waves. Phys. Lett. A 377, 2590–2593 (2013)

    MATH  Google Scholar 

  39. Chabchoub, A., Hoffmann, N., Onorato, M., Slunyaev, A., Sergeeva, A., Pelinovsky, E., Akhmediev, N.: Observation of a hierarchy of up to fifth-order rogue waves in a water tank. Phys. Rev. E. 86, 056601 (2012)

    Google Scholar 

  40. Chen, S.H., Soto-Crespo, J.M., Grelu, P.: Dark three-sister rogue waves in normally dispersive optical fibers with random birefringence. Opt. Express 22, 27632 (2014)

    Google Scholar 

  41. Chen, S.H., Mihalache, D.: Vector rogue waves in the Manakov system: diversity and compossibility. J. Phys. A: Math. Theor. 48, 215202 (2015)

    MATH  Google Scholar 

  42. Dai, C.Q., Zhang, J.F.: Exact spatial similaritons and rogons in 2D graded-index waveguides. Opt. Lett. 35, 2651–2653 (2010)

    Google Scholar 

  43. Dai, C.Q., Wang, Y.Y.: Controllable combined Peregrine soliton and Kuznetsov-Ma soliton in PT-symmetric nonlinear couplers with gain and loss. Nonlinear Dyn. 80, 715–721 (2015)

    Google Scholar 

  44. Kumar, C.N., Gupta, R., Goyal, A., Loomba, S.: Controlled giant rogue waves in nonlinear fiber optics. Phys. Rev. A 86, 025802 (2012)

    Google Scholar 

  45. Dai, C.Q., Wang, Y.Y.: Spatiotemporal localizations in (3 + 1)-dimensional PT-symmetric and strongly nonlocal nonlinear media. Nonlinear Dyn. 83, 2453–2459 (2016)

    Google Scholar 

  46. Dai, C.Q., Fan, Y., Zhou, G.Q., Zheng, J., Chen, L.: Vector spatiotemporal localized structures in (3 + 1)-dimensional strongly nonlocal nonlinear media. Nonlinear Dyn. 86, 999–1005 (2016)

    Google Scholar 

  47. Xu, S.L., Belic, M.R.: Three-dimensional Hermite-Bessel solitons in strongly nonlocal media with variable potential coefficients. Opt. Commun. 313, 62–69 (2014)

    Google Scholar 

  48. Maruno, K., Ohta, Y.: Localized solitons of a (2 +1)-dimensional nonlocal nonlinear Schrödinger equation. Phys. Lett. A 372, 4446–4450 (2008)

    MATH  Google Scholar 

  49. Yan, Z.Y.: Rogon-like solutions excited in the two-dimensional nonlocal nonlinear Schrödinger equation. J. Math. Anal. Appl. 380, 689–696 (2011)

    MATH  Google Scholar 

  50. Dai, C.Q., Liu, J., Fan, Y., Yu, D.G.: Two-dimensional localized Peregrine solution and breather excited in a variable-coefficient nonlinear Schrödinger equation with partial nonlocality. Nonlinear Dyn. 88, 1373–1383 (2017)

    Google Scholar 

  51. Dai, C.Q., Wang, Y., Liu, J.: Spatiotemporal Hermite-Gaussian solitons of a (3 + 1)-dimensional partially nonlocal nonlinear Schrodinger equation. Nonlinear Dyn. 84, 1157–1161 (2016)

    MATH  Google Scholar 

  52. Wang, Y.Y., Dai, C.Q., Zhou, G.Q., Fan, Y., Chen, L.: Rogue wave and combined breather with repeatedly excited behaviors in the dispersion/diffraction decreasing medium. Nonlinear Dyn. 87, 67–73 (2017)

    Google Scholar 

  53. Dai, C.Q., Wang, Y.Y., Zhang, J.F.: Managements of scalar and vector rogue waves in a partially nonlocal nonlinear medium with linear and harmonic potentials. Nonlinear Dyn. 102, 379–391 (2020)

    Google Scholar 

  54. Dai, C.Q., Zhang, J.F.: Controlling effect of vector and scalar crossed double-Ma breathers in a partially nonlocal nonlinear medium with a linear potential. Nonlinear Dyn. 100, 1621–1628 (2020)

    Google Scholar 

  55. Wang, Y.Y., Dai, C.Q., Xu, Y.Q., Zheng, J., Fan, Y.: Dynamics of nonlocal and localized spatiotemporal solitons for a partially nonlocal nonlinear Schrodinger equation. Nonlinear Dyn. 92, 1261–1269 (2018)

    Google Scholar 

  56. Zhu, H.P., Xu, Y.J.: High-dimensional vector solitons for a variable-coefficient partially nonlocal coupled Gross-Pitaevskii equation in a harmonic potential. Appl. Math. Lett. 124, 107701 (2022)

    MATH  Google Scholar 

  57. Serkin, V.N., Belyaeva, T.L., Alexandrov, I.V., Melchor, G.M.: Novel topological quasi-soliton solutions for the nonlinear cubic-quintic Schrodinger equation model. Proc. SPIE 4271, 292–302 (2001)

    Google Scholar 

  58. Dai, C.Q., Wang, X.G., Zhou, G.Q.: Stable light-bullet solutions in the harmonic and parity-time-symmetric potentials. Phys. Rev. A 89, 013834 (2014)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11975008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiping Zhu.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest exists.

Human and animal rights

This article does not contain any studies with human or animal subjects.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Chen, L. Vector dark-bright second-order rogue wave and triplets for a (3+1)-dimensional CNLSE with the partially nonlocal nonlinearity. Nonlinear Dyn 111, 4673–4682 (2023). https://doi.org/10.1007/s11071-022-08068-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-08068-0

Keywords

Navigation