Skip to main content
Log in

Integrability in \([d+1]\) dimensions: combined local equations and commutativity of the transfer matrices

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We propose new inhomogeneous local integrability equations–combined equations, for statistical vertex models of general dimensions in the framework of the Algebraic Bethe Ansatz (ABA). For the low-dimensional cases the efficiency of the step-by-step consideration of the transfer matrices’ commutation is demonstrated. We construct some simple 3D solutions with the three-state R-matrices of certain 20-vertex structure; the connection with the quantum three-qubit gates is discussed. New, restricted versions of 3D local integrability equations with four-state R-matrices are defined, too. Then we construct a new 3D analog of the two-dimensional star-triangle equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data.

References

  1. C.N. Yang, Phys. Rev. Lett. 19, 1312 (1967)

    Article  ADS  MathSciNet  Google Scholar 

  2. A. Onsager, Phys. Rev. 65, 117–49 (1944)

    Article  ADS  MathSciNet  Google Scholar 

  3. R.J. Baxter, Solvable eight-vertex model on an arbitrary planar lattice. Proc. Roy. Soc. 289, 2526–47 (1978)

    MathSciNet  Google Scholar 

  4. R.J. Baxter, J. Stat. Phys. 28, 1 (1982)

    Article  ADS  Google Scholar 

  5. L.D. Faddeev, L.A. Takhtajan, Usp. Mat. Nauk 34, 13–194 (1979)

    Google Scholar 

  6. L.D. Faddeev, E.K. Sklyanin, L.A. Takhtajan, Theor. Math. Phys. 40, 194 (1979)

    Google Scholar 

  7. A.B. Zamolodchikov, A.L.B. Zamolodchikov, Ann. Phys. 120, 253 (1979)

    Article  ADS  Google Scholar 

  8. A.B. Zamolodchikov, Sov. Sci. Rev. A2, 1 (1980)

    Google Scholar 

  9. P.P. Kulish, N. Yu, Reshetikhin, E.K. Sklyanin, Lett. Math. Phys. 5, 393 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  10. A.B. Zamolodchikov, Commun. Math. Phys. 79, 489–505 (1981)

    Article  ADS  Google Scholar 

  11. A.B. Zamolodchikov, Z. Eksp, Teor. Fiz. 79, 641 (1980)

    Google Scholar 

  12. A.B. Zamolodchikov, JETP 52, 325 (1981)

    ADS  Google Scholar 

  13. R.J. Baxter, Commun. Math. Phys. 88, 185–205 (1983)

    Article  ADS  Google Scholar 

  14. V.V. Bazhanov, Yu.G. Stroganov, Teor. Mat. Fiz. 52, 105–113 (1982)

    Article  Google Scholar 

  15. V.V. Bazhanov, Yu.G. Stroganov, Nucl. Phys. 230L, 435 (1984)

    Article  ADS  Google Scholar 

  16. S.V. Pokrovsky, Y.A. Bashilov, Commun. Math. Phys. 84, 103–132 (1982)

    Article  ADS  Google Scholar 

  17. R.J. Baxter, Exactly solvable models in Statistical Mechanics (Academic Press, London, 1982)

    MATH  Google Scholar 

  18. M.T. Jaekel, J.M. Maillard, J. Phys. A 15, 1309 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  19. A.A. Belavin, V.G. Drinfeld, Funk. Anal. Pril. 16, 1 (1983)

    Google Scholar 

  20. V. G. Drinfeld,, Quantum Groups. Proceedings International Congress of Mathematicians, Berkeley, 798-820 (1986)

  21. V. G. Drinfeld, Zap. Nauchn. Sem. LOMI 155, 18–49 (1986)

  22. V. G. Drinfeld, Sov. Math. Doklady 36, 212–216 (1988)

  23. A.G. Izergin, V.E. Korepin, Lett. Math. Phys. 5, 199 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  24. P. P. Kulish, E. K. Sklyanin, Integrable Quantum Field Theories, Proceedings of the Symposium, Tvaerminne, Finland, (1981)

  25. A. B. Zamolodchikov, LOMI, preprint E-9-87, Leningrad (1987)

  26. H. Au-Yang, B. McCoy, J.H. Perk, Phys. Lett. A 123, 219 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  27. R. Baxter, J.H. Perk, H. Au-Yang, Phys. Lett. 128, 138–142 (1988)

    Article  MathSciNet  Google Scholar 

  28. R. Baxter, H. Au-Yang, B. McCoy, J. Perk, Yu. Stroganov, Commun. Math. Phys. 138, 393–408 (1988)

    Google Scholar 

  29. E. Date, M. Jimbo, A. Kuniba, T. Miva, M. Okado, Nucl. Phys. B 290(FS20), 231–73 (1987)

    Article  ADS  Google Scholar 

  30. E. Date, M. Jimbo, A. Kuniba, T. Miva, M. Okado, Adv. Studies in Pure Math. 16, 17–122 (1988)

  31. P. Ginsparg, Some statistical mechanical models and conformal field theories, HUTP-89/A027, Lectures given at Trieste spring school, Apr. 3-11 (1989)

  32. M. Jimbo, Commun. Math. Phys. 102, 537 (1986)

    Article  ADS  Google Scholar 

  33. M. Jimbo, World Sci. pp. 111-134 (1990)

  34. M. Jimbo, ed., Yang-Baxter equation in integrable systems, World Scientific (Singapore) (1990)

  35. C. Gomez, M. Ruiz-Altaba, G. Sierra, Quantum groups in two-dimensional physics (Cambridge University Press, Cambridge, 1990)

    MATH  Google Scholar 

  36. V.E. Korepin, N.M. Bogoliubov, A.G. Izergin, Quantum inverse scattering method and correlation functions (Cambridge University Press, Cambridge, 1993)

    Book  MATH  Google Scholar 

  37. V.V. Bazhanov, R.J. Baxter, J. Statist. Phys. 69, 453–585 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  38. I.G. Korepanov, Comm. Math. Phys. 154, 85 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  39. J. Hietarinta, J. Phys. A: Math. Gen. 27, 5727–5748 (1994)

    Article  ADS  Google Scholar 

  40. R.M. Kashaev, V.V. Mangazeev, Y.G. Stroganov, Int. J. Mod. Phys. A 8, 587–601 (1993)

    Article  ADS  Google Scholar 

  41. V.V. Mangazeev, Y.G. Stroganov, Mod. Phys. Lett. A 8, 3475–3482 (1993)

    Article  ADS  Google Scholar 

  42. V.V. Mangazeev, S.M. Sergeev, Y.G. Stroganov, Int. J. Mod. Phys. A 9, 5517 (1994)

    Article  ADS  Google Scholar 

  43. Z. N. Hu, arXiv:hep-th/9408138

  44. H.E. Boos, V.V. Mangazeev, S.M. Sergeev, Int. J. Mod. Phys. A 10, 4041–4064 (1995). arXiv:hep-th/9407146

    Article  ADS  Google Scholar 

  45. J. Ambjorn, Sh. Khachatryan, A. Sedrakyan, Nucl. Phys. B 808, 525–545 (2005)

    Google Scholar 

  46. S. Khachatryan, A. Ferraz, A. Klümper, A. Sedrakyan, Nucl. Phys. B 899, 444 (2015)

    Article  ADS  Google Scholar 

  47. A. Kitaev, Ann. Phys. 303, 2–30 (2003)

    Article  ADS  Google Scholar 

  48. A. Kitaev, Ann. Phys. 321(1), 2–111 (2006)

    Article  ADS  Google Scholar 

  49. V. Pasquier, H. Saleur, Nucl. Phys. B 330, 523 (1990)

    Article  ADS  Google Scholar 

  50. D. Gurevich, Leningrad Math. J. 2 119-148 (1990)

  51. D. Gurevich, P. Saponov, arXiv:1906.07287v3

  52. D. Gurevich, P. Saponov, arXiv:1906.07287v3

  53. L. Frappat, D. Issing, E. Ragoucy, LAPTH-008/18 (2018), arXiv:1803.0031s

  54. T. Hayashi, J. Algebra 152 (1992) 146-165

  55. P. Etingof, V. Retakh, arXiv:math/9809065v1

  56. P. Etingof, V. Retakh, arXiv:math/9809065v1

  57. I. Gelfand, V. Retakh, Funct. Anal. Appl. 26(4), 1–20 (1992)

    MathSciNet  Google Scholar 

  58. J. Cardy, Scaling and renormalization in statistical physics (Cambridge University Press, Cambridge, 1997)

    MATH  Google Scholar 

  59. A. P. Isaev, Preprint MPIM (Bonn), MPI 2004-132 (2004)

  60. D. Karakhanyan, Sh. Khachatryan, J. Phys. A: Math. Theor. 42, 375205 (2009)

    Article  Google Scholar 

  61. D. Karakhanyan, Sh. Khachatryan, Nucl. Phys. 850, 522–552 (2011)

    Article  ADS  Google Scholar 

  62. D. Karakhanyan, S. Khachatryan, Nucl. Phys. B 868, 328–349 (2013)

    Article  ADS  Google Scholar 

  63. V.V. Bazhanov, S.M. Sergeev, J. Phys. A 39, 3295–3310 (2006). arXiv:hep-th/0509181

    Article  ADS  MathSciNet  Google Scholar 

  64. V.V. Bazhanov, R.J. Baxter, J. Statist. Phys. 71, 839–864 (1993). hep-th/9212050

    Article  ADS  MathSciNet  Google Scholar 

  65. I. Frenkel, G. Moore, Commun. Math. Phys. 138, 259 (1991)

    Article  ADS  Google Scholar 

  66. Z.N. Hu, B.Y. Hou, J. Stat. Phys. 79, 759 (1995)

    Article  ADS  Google Scholar 

  67. P.N. Bibikov, J. Stat. Mech. 2018, 043108 (2018)

    Article  Google Scholar 

  68. K. Ueda, Y. Yoshida, J. High Energ. Phys. 2020, 157 (2020)

    Article  Google Scholar 

  69. S. Khachatryan, A. Sedrakyan, Phys. Lett. A 37, 7397–7406 (2002)

    Google Scholar 

  70. J. Ambjorn, S. Khachatryan, A. Sedrakyan, J. Phys. A 37, 7397–7406 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  71. S. Khachatryan, Nucl. Phys. B 883, 629–655 (2014)

    Article  ADS  Google Scholar 

  72. S. Khachatryan, A. Sedrakyan, J. Stat. Phys. 150, 130 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  73. S. Khachatryan, Nucl. Phys. B 936, 215–238 (2018)

    Article  ADS  Google Scholar 

  74. L.H. Kauffman, S.J. Lomonaco Jr., New J. Phys. 6, 134 (2004)

    Article  ADS  Google Scholar 

  75. Y. Zhang, L.H. Kauffman, M.L. Ge, Int. J. Quantum Inf. 3, 669 (2005)

    Article  Google Scholar 

  76. J.L. Chen, K. Xue, M.L. Ge, Phys. Rev. A 76, 042324 (2007)

    Article  ADS  Google Scholar 

  77. R. Raussendorf, H.J. Briegel, Phys. Rev. Lett. 86, 5188 (2001)

    Article  ADS  Google Scholar 

  78. R. Prevedel, P. Walther, F. Tiefenbacher, P. Böhi, R. Kaltenbaek, T. Jennewein, A. Zeilinger, Nature (London) 445, 65 (2007)

    Article  ADS  Google Scholar 

  79. M. Enríquez, F. Delgado, K. Zyczkowski, Entropy 20, 745 (2018)

    Article  ADS  Google Scholar 

  80. V. Bazhanov, Yu. Stroganov, J. Stat. Phys. bf 59, 799–817 (1990)

    Article  ADS  Google Scholar 

  81. P. Jordan, E.P. Wigner, Z. Phys. 47, 631–651 (1928)

    Article  ADS  Google Scholar 

  82. S. Khachatryan, A. Sedrakyan, Ann. Phys. 936, 215–238 (2022)

    Google Scholar 

Download references

Acknowledgements

The work was supported by the Science Committee of RA, in the frames of the research projects N 20TTWS-1C035, N 20TTAT-QTa009, and N 21AG-1C024.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahane A. Khachatryan.

A Appendix

A Appendix

For the well-known eight-vertex models [17] with the matrix elements

\(R_{ij}^{kr}(u),\quad i+j=k+r \; {mod}\; 2\), the defining relations for the solutions following from Eq. (2.14) start from the low dimensions \(n=2,3\). At \(n=2\) there are two relations, which appear to be sufficient for commutation of the transfer matrices (with two arbitrary constant parameters \(d_0,\; a_0\))

$$\begin{aligned}{} & {} \frac{R_{00}^{11}(u)R_{01}^{10}(u)}{R_{11}^{00}(u)R_{10}^{01}(u)}=d_0, \quad \frac{\left( [R_{00}^{00}(u)]^2-[R_{11}^{11}(u)]^2+[R_{10}^{10}(u)]^2-[R_{01}^{01}(u)]^2\right) }{R_{11}^{00}(u)R_{01}^{10}(u)}=a_0. \end{aligned}$$
(A.1)

Let us now separately discuss the situations with symmetric (*) and non-symmetric matrices (**).

* Symmetric R-matrices.

The following symmetry relations \(R_{00}^{00}(u)={R_{11}^{11}}(u)\), \(R_{01}^{01}(u)={R_{10}^{10}}(u)\) and \(R_{01}^{10}(u)={R_{10}^{01}}(u)\), \(R_{00}^{11}(u)=d_0 {R_{11}^{00}}(u)\),

imply that Eq. (A.1) takes place automatically. Now \(a_0=0\), and the equations in (A.1) are identities. One can always take \(d_0=1\), as all the discussed equations (the commutativity of the transfer matrices, the ordinary and non-homogeneous Yang–Baxter equations) are defined up to the transformations: \(R_{00}^{11}(u)\rightarrow R_{00}^{11}(u)/\sqrt{d_0}\), \({R_{11}^{00}}(u)\rightarrow \sqrt{d_0} {R_{11}^{00}}(u)\).

At the next steps, when \(n=3\) and \(n=4\) there are arisen the following constraints correspondingly

$$\begin{aligned}{} & {} \frac{(R_{00}^{00}(u)-R_{01}^{01}(u))^2-R_{01}^{10}(u)^2-d_0 {R_{11}^{00}(u)}^2}{R_{11}^{00}(u)}={\textrm{const}},\quad {\textrm{and}}\quad \frac{R_{00}^{00}(u)R_{01}^{01}(u)}{R_{11}^{00}(u)}={\textrm{const}}. \end{aligned}$$
(A.2)

** Non-symmetric matrices. Here \(a_0\ne 0\)

in (A.1) and at the next step \(n=3\) the defining relations are the following ones.

$$\begin{aligned}{} & {} \frac{R_{00}^{00}(u)([R_{00}^{00}(u)]^2-[R_{01}^{01}(u)]^2)-R_{10}^{10}(u)([R_{11}^{11}(u)]^2-[R_{10}^{10}(u)]^2)}{ (R_{11}^{11}(u)+R_{01}^{01}(u))( R_{01}^{10}(u) R_{10}^{01}(u)+R_{00}^{11}(u)R_{11}^{00}(u))+(d_{+})R_{11}^{00}(u)R_{01}^{10}(u)(R_{00}^{00}(u)+R_{10}^{10}(u))}=1,\nonumber \\{} & {} \frac{R_{11}^{11}(u)([R_{11}^{11}(u)]^2-[R_{10}^{10}(u)]^2)-R_{01}^{01}(u)([R_{00}^{00}(u)]^2-[R_{01}^{01}(u)]^2)}{ (R_{00}^{00}(u)+R_{10}^{10}(u))(R_{01}^{10}(u) R_{10}^{01}(u)+R_{00}^{11}(u)R_{11}^{00}(u))+(d_{-})R^{11}_{00}(u)R_{10}^{01}(u)(R_{11}^{11}(u)+R_{01}^{01}(u))}=1. \end{aligned}$$
(A.3)

We can see that two relations above can be obtained one from other by the transformations of the matrix elements - \(R_{ij}^{kr}\rightarrow R_{\bar{i}\bar{j}}^{\bar{k}\bar{r}}\), with \(\bar{i}=(i+1)\; \textrm{mod}\; 2\). The constants \(d_{\pm }\) also are connected one with other, as one can define ([72])

\(d_{+}=\frac{3{R_{00}^{00}}'(0)-{R_{11}^{11}}'(0)-{R_{01}^{01}}'(0)-{R_{10}^{10}}'(0)- {R_{01}^{10}}'(0)-{R_{10}^{01}}'(0)}{{R_{11}^{00}}'(0)}\), \(d_{-}=\frac{3{R_{11}^{11}}'(0)-{R_{00}^{00}}'(0)-{R_{01}^{01}}'(0)-{R_{10}^{10}}'(0)- {R_{01}^{10}}'(0)-{R_{10}^{01}}'(0)}{{R_{00}^{11}}'(0)}\).

For the cases of next n-s (\(n\ge 4\)) the commutativity of the transfer matrices \(\tau _n\) also is ensured by obtained relations (A.1, A.2, A.3), so they entirely define the R-matrices for integrable models. The obtained relations intend that for the general non-homogeneous case there are four independent functions (one of them always can be taken as unity) and three arbitrary constants by means of which all the matrix elements can be expressed, as it was stated already by direct solving the YBE (see the works [71, 72] and the citations therein). As it is discussed therein, following YBE (2.6) \(\bar{R}(u,v)R(u)R(v)=R(v)R(u)\bar{R}(u,v)\), define uniquely the intertwiner matrix \(\bar{R}(u,v)\), and there are no additional constraints on \(\bar{R}(u,v)\) and R(u), and it appears that \(R(u)=\bar{R}(u,0)\). The familiar elliptic, trigonometric, and rational parameterizations can be obtained letting \(\bar{R}(u,v)=\bar{R}(u-v)\).

Fig. 4
figure 4

“Connected” (or combined) star-triangle relations: the corresponding transfer matrices and the plaquette weights; (i) product of two transfer matrices—darker stripes shifted by a link belong to two vertically disposed fragments of 2d transfer matrices, (ii) checkerboard arrangement of plaquette weights in a two-dimensional transfer matrix, (iii) the weight plaquettes on a fragment of the product of two transfer matrices—at the junctions between the plaquettes, the edges of horizontal or vertical intertwiner weights can be located

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khachatryan, S.A. Integrability in \([d+1]\) dimensions: combined local equations and commutativity of the transfer matrices. Eur. Phys. J. Plus 138, 1058 (2023). https://doi.org/10.1140/epjp/s13360-023-04711-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04711-w

Navigation