Skip to main content
Log in

Don’t throw the baby out with the bath water

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

I stress the importance of retaining a healthy classical limit while we search for an ultraviolet completion to quantum gravity. A key problem with negative-norm quantizations of higher-derivative Lagrangians is that their classical limits do not correspond to real-valued metrics evolving in a real-valued spacetime. I also demonstrate that no completion based on the flat spacetime background S-matrix can suffice by providing an explicit example of a theory with unit S-matrix which still shows interesting changes in single-particle kinematics and in the evolution of its background. I discuss the implications of these considerations for the program of Asymptotic Safety. Finally, I urge that some attention be given to the possibility that quantum general relativity might make sense if only we could go beyond conventional perturbation theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability Statement

No data are associated in the manuscript.

Notes

  1. The normalization factor is,

    $$\begin{aligned} N = \sqrt{\frac{m}{\pi \hbar }} \Bigl [ \sqrt{g} (1 \!-\! 2\sqrt{g})\Bigr ]^{\frac{1}{4}} \;. \nonumber \end{aligned}$$
  2. I thank Arkady Tseytlin for this observation.

  3. Note that this immediately explains the mass (36).

References

  1. C.M. Will, Living Rev. Rel. 17, 4 (2014). https://doi.org/10.12942/lrr-2014-4. [arXiv:1403.7377 [gr-qc]]

    Article  Google Scholar 

  2. V.F. Mukhanov, G.V. Chibisov, JETP Lett. 33, 532–535 (1981)

    ADS  Google Scholar 

  3. N. Aghanim et al. [Planck], Astron. Astrophys. 641, A1 (2020) https://doi.org/10.1051/0004-6361/201833880[arXiv:1807.06205 [astro-ph.CO]]

  4. A. Loeb, M. Zaldarriaga, Phys. Rev. Lett. 92, 211301 (2004). https://doi.org/10.1103/PhysRevLett.92.211301. [arXiv:astro-ph/0312134 [astro-ph]]

    Article  ADS  Google Scholar 

  5. S. Furlanetto, S.P. Oh, F. Briggs, Phys. Rept. 433, 181–301 (2006). https://doi.org/10.1016/j.physrep.2006.08.002. [arXiv:astro-ph/0608032 [astro-ph]]

    Article  ADS  Google Scholar 

  6. K.W. Masui, U.L. Pen, Phys. Rev. Lett. 105, 161302 (2010). https://doi.org/10.1103/PhysRevLett.105.161302. [arXiv:1006.4181 [astro-ph.CO]]

    Article  ADS  Google Scholar 

  7. A.A. Starobinsky, JETP Lett. 30, 682–685 (1979)

    ADS  Google Scholar 

  8. P. A. R. Ade et al. [BICEP and Keck], Phys. Rev. Lett. 127, no.15, 151301 (2021) https://doi.org/10.1103/PhysRevLett.127.151301. [arXiv:2110.00483 [astro-ph.CO]]

  9. L. Tan, N.C. Tsamis, R.P. Woodard, Phil. Trans. Roy. Soc. Lond. A 380, 0187 (2021). https://doi.org/10.1098/rsta.2021.0187. [arXiv:2107.13905 [gr-qc]]

    Article  Google Scholar 

  10. J. F. Donoghue, Phys. Rev. D 50, 3874-3888 (1994) https://doi.org/10.1103/PhysRevD.50.3874[arXiv:gr-qc/9405057 [gr-qc]]

  11. J. F. Donoghue, [arXiv:gr-qc/9512024 [gr-qc]]

  12. C.P. Burgess, Living Rev. Rel. 7, 5–56 (2004). https://doi.org/10.12942/lrr-2004-5. [arXiv:gr-qc/0311082 [gr-qc]]

    Article  Google Scholar 

  13. J.F. Donoghue, A.I.P. Conf, Proc. 1483(1), 73–94 (2012). https://doi.org/10.1063/1.4756964. [arXiv:1209.3511 [gr-qc]]

    Article  Google Scholar 

  14. J. Donoghue, Scholarpedia 12(4), 32997 (2017). https://doi.org/10.4249/scholarpedia.32997

    Article  ADS  MathSciNet  Google Scholar 

  15. J. F. Donoghue, [arXiv:2211.09902 [hep-th]]

  16. K.S. Stelle, Phys. Rev. D 16, 953–969 (1977). https://doi.org/10.1103/PhysRevD.16.953

    Article  ADS  MathSciNet  Google Scholar 

  17. A.A. Starobinsky, Phys. Lett. B 91, 99–102 (1980). https://doi.org/10.1016/0370-2693(80)90670-X

    Article  ADS  Google Scholar 

  18. N. Aghanim et al. [Planck], Astron. Astrophys. 641, A6 (2020) [erratum: Astron. Astrophys. 652, C4 (2021)] https://doi.org/10.1051/0004-6361/201833910[arXiv:1807.06209 [astro-ph.CO]]

  19. Y. Akrami et al. [Planck], Astron. Astrophys. 641, A10 (2020) https://doi.org/10.1051/0004-6361/201833887[arXiv:1807.06211 [astro-ph.CO]]

  20. R.P. Woodard, Rept. Prog. Phys. 72, 126002 (2009). https://doi.org/10.1088/0034-4885/72/12/126002. [arXiv:0907.4238 [gr-qc]]

    Article  ADS  Google Scholar 

  21. B.S. DeWitt, Phys. Rev. 160, 1113–1148 (1967). https://doi.org/10.1103/PhysRev.160.1113

    Article  ADS  Google Scholar 

  22. B.S. DeWitt, Phys. Rev. 162, 1195–1239 (1967). https://doi.org/10.1103/PhysRev.162.1195

    Article  ADS  Google Scholar 

  23. B.S. DeWitt, Phys. Rev. 162, 1239–1256 (1967). https://doi.org/10.1103/PhysRev.162.1239

    Article  ADS  Google Scholar 

  24. G. ’t Hooft, M. J. G. Veltman, Ann. Inst. H. Poincare Phys. Theor. A 20, 69-94 (1974)

  25. S. Deser, P. van Nieuwenhuizen, Phys. Rev. Lett. 32, 245–247 (1974). https://doi.org/10.1103/PhysRevLett.32.245

    Article  ADS  Google Scholar 

  26. S. Deser, P. van Nieuwenhuizen, Phys. Rev. D 10, 401 (1974). https://doi.org/10.1103/PhysRevD.10.401

    Article  ADS  Google Scholar 

  27. S. Deser, P. van Nieuwenhuizen, Phys. Rev. D 10, 411 (1974). https://doi.org/10.1103/PhysRevD.10.411

    Article  ADS  MathSciNet  Google Scholar 

  28. S. Deser, H.S. Tsao, P. van Nieuwenhuizen, Phys. Lett. B 50, 491–493 (1974). https://doi.org/10.1016/0370-2693(74)90268-8

    Article  ADS  Google Scholar 

  29. S. Deser, H.S. Tsao, P. van Nieuwenhuizen, Phys. Rev. D 10, 3337 (1974). https://doi.org/10.1103/PhysRevD.10.3337

    Article  ADS  Google Scholar 

  30. M.H. Goroff, A. Sagnotti, Phys. Lett. B 160, 81–86 (1985). https://doi.org/10.1016/0370-2693(85)91470-4

    Article  ADS  Google Scholar 

  31. M.H. Goroff, A. Sagnotti, Nucl. Phys. B 266, 709–736 (1986). https://doi.org/10.1016/0550-3213(86)90193-8

    Article  ADS  Google Scholar 

  32. A.E.M. van de Ven, Nucl. Phys. B 378, 309–366 (1992). https://doi.org/10.1016/0550-3213(92)90011-Y

    Article  ADS  Google Scholar 

  33. E. Tomboulis, Phys. Lett. B 70, 361–364 (1977). https://doi.org/10.1016/0370-2693(77)90678-5

    Article  ADS  Google Scholar 

  34. A. Salam, J.A. Strathdee, Phys. Rev. D 18, 4480 (1978). https://doi.org/10.1103/PhysRevD.18.4480

    Article  ADS  MathSciNet  Google Scholar 

  35. I. Antoniadis, N.C. Tsamis, Phys. Lett. B 144, 55–60 (1984). https://doi.org/10.1016/0370-2693(84)90175-8

    Article  ADS  Google Scholar 

  36. I. Antoniadis, E.T. Tomboulis, Phys. Rev. D 33, 2756 (1986). https://doi.org/10.1103/PhysRevD.33.2756

    Article  ADS  Google Scholar 

  37. D.A. Johnston, Nucl. Phys. B 297, 721–732 (1988). https://doi.org/10.1016/0550-3213(88)90555-X

    Article  ADS  Google Scholar 

  38. S.W. Hawking, T. Hertog, Phys. Rev. D 65, 103515 (2002). https://doi.org/10.1103/PhysRevD.65.103515. [arXiv:hep-th/0107088 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  39. F. d. Salles and I. L. Shapiro, Phys. Rev. D 89, no.8, 084054 (2014) [erratum: Phys. Rev. D 90, no.12, 129903 (2014)] https://doi.org/10.1103/PhysRevD.89.084054[arXiv:1401.4583 [hep-th]]

  40. F. de O.Salles and I. L. Shapiro, Universe 4, no.9, 91 (2018) https://doi.org/10.3390/universe4090091. [arXiv:1808.09015 [gr-qc]]

  41. J.F. Donoghue, G. Menezes, Phys. Rev. D 100(10), 105006 (2019). https://doi.org/10.1103/PhysRevD.100.105006. [arXiv:1908.02416 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  42. J.F. Donoghue, G. Menezes, Phys. Rev. Lett. 123(17), 171601 (2019). https://doi.org/10.1103/PhysRevLett.123.171601. [arXiv:1908.04170 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  43. P.D. Mannheim, Int. J. Mod. Phys. D 29(14), 2043009 (2020). https://doi.org/10.1142/S0218271820430099. [arXiv:2004.00376 [hep-th]]

    Article  ADS  Google Scholar 

  44. J.F. Donoghue, G. Menezes, Phys. Rev. D 104(4), 045010 (2021). https://doi.org/10.1103/PhysRevD.104.045010. [arXiv:2105.00898 [hep-th]]

    Article  ADS  Google Scholar 

  45. B. Holdom, Phys. Rev. D 105(4), 046008 (2022). https://doi.org/10.1103/PhysRevD.105.046008. [arXiv:2107.01727 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  46. P.D. Mannheim, Nuovo Cim. C 45(2), 27 (2022). https://doi.org/10.1393/ncc/i2022-22027-6. [arXiv:2109.12743 [hep-th]]

    Article  Google Scholar 

  47. P. D. Mannheim, [arXiv:2303.10827 [hep-th]]

  48. T.D. Lee, G.C. Wick, Nucl. Phys. B 9, 209–243 (1969). https://doi.org/10.1016/0550-3213(69)90098-4

    Article  ADS  Google Scholar 

  49. T.D. Lee, G.C. Wick, Phys. Rev. D 2, 1033–1048 (1970). https://doi.org/10.1103/PhysRevD.2.1033

    Article  ADS  MathSciNet  Google Scholar 

  50. B. Grinstein, D. O’Connell, M.B. Wise, Phys. Rev. D 77, 025012 (2008). https://doi.org/10.1103/PhysRevD.77.025012. [arXiv:0704.1845 [hep-ph]]

    Article  ADS  Google Scholar 

  51. J.F. Donoghue, G. Menezes, Phys. Rev. D 99(6), 065017 (2019). https://doi.org/10.1103/PhysRevD.99.065017. [arXiv:1812.03603 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  52. C.M. Bender, P.D. Mannheim, Phys. Rev. Lett. 100, 110402 (2008). https://doi.org/10.1103/PhysRevLett.100.110402. [arXiv:0706.0207 [hep-th]]

    Article  ADS  Google Scholar 

  53. C.M. Bender, P.D. Mannheim, J. Phys. A 41, 304018 (2008). https://doi.org/10.1088/1751-8113/41/30/304018. [arXiv:0807.2607 [hep-th]]

    Article  MathSciNet  Google Scholar 

  54. M. Niedermaier, M. Reuter, Living Rev. Rel. 9, 5–173 (2006). https://doi.org/10.12942/lrr-2006-5

    Article  Google Scholar 

  55. D. Benedetti, P.F. Machado, F. Saueressig, Mod. Phys. Lett. A 24, 2233–2241 (2009). https://doi.org/10.1142/S0217732309031521. [arXiv:0901.2984 [hep-th]]

    Article  ADS  Google Scholar 

  56. K.G. Falls, D.F. Litim, J. Schröder, Phys. Rev. D 99(12), 126015 (2019). https://doi.org/10.1103/PhysRevD.99.126015. [arXiv:1810.08550 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  57. M. Ostrogradsky, Mem. Acad. St. Petersbourg 6(4), 385–517 (1850)

    Google Scholar 

  58. R.P. Woodard, Scholarpedia 10(8), 32243 (2015). https://doi.org/10.4249/scholarpedia.32243. [arXiv:1506.02210 [hep-th]]

    Article  Google Scholar 

  59. R.P. Woodard, Lect. Notes Phys. 720, 403–433 (2007). https://doi.org/10.1007/978-3-540-71013-4_14. [arXiv:astro-ph/0601672 [astro-ph]]

    Article  ADS  Google Scholar 

  60. J.M. Cline, S. Jeon, G.D. Moore, Phys. Rev. D 70, 043543 (2004). https://doi.org/10.1103/PhysRevD.70.043543. [arXiv:hep-ph/0311312 [hep-ph]]

    Article  ADS  Google Scholar 

  61. C. Deffayet, A. Held, S. Mukohyama, A. Vikman, [arXiv:2305.09631 [gr-qc]]

  62. D.G. Boulware, G.T. Horowitz, A. Strominger, Phys. Rev. Lett. 50, 1726 (1983). https://doi.org/10.1103/PhysRevLett.50.1726

    Article  ADS  MathSciNet  Google Scholar 

  63. A. Mostafazadeh, [arXiv:quant-ph/0310164 [quant-ph]]

  64. A. Mostafazadeh, A. Batal, J. Phys. A 37, 11645–11680 (2004). https://doi.org/10.1088/0305-4470/37/48/009. [arXiv:quant-ph/0408132 [quant-ph]]

    Article  ADS  MathSciNet  Google Scholar 

  65. A. Mostafazadeh, Phys. Scripta 82, 038110 (2010). https://doi.org/10.1088/0031-8949/82/03/038110. [arXiv:1008.4680 [quant-ph]]

    Article  ADS  Google Scholar 

  66. E. T. Tomboulis, [arXiv:hep-th/9702146 [hep-th]]

  67. J. W. Moffat, https://doi.org/10.1063/1.1524563[arXiv:hep-th/0207198 [hep-th]]

  68. T. Biswas, A.S. Koshelev, A. Mazumdar, Phys. Rev. D 95(4), 043533 (2017). https://doi.org/10.1103/PhysRevD.95.043533. [arXiv:1606.01250 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  69. A.S. Koshelev, K.S. Kumar, A.A. Starobinsky, Int. J. Mod. Phys. D 29(14), 2043018 (2020). https://doi.org/10.1142/S021827182043018X. [arXiv:2005.09550 [hep-th]]

    Article  ADS  Google Scholar 

  70. D. Evens, J.W. Moffat, G. Kleppe, R.P. Woodard, Phys. Rev. D 43(2), 499–519 (1991). https://doi.org/10.1103/PhysRevD.43.499

    Article  ADS  Google Scholar 

  71. G. Kleppe, R.P. Woodard, Nucl. Phys. B 388, 81–112 (1992). https://doi.org/10.1016/0550-3213(92)90546-N. [arXiv:hep-th/9203016 [hep-th]]

    Article  ADS  Google Scholar 

  72. J. D. Jackson, Wiley, (1998), ISBN 978-0-471-30932-1

  73. K.E. Leonard, R.P. Woodard, Phys. Rev. D 85, 104048 (2012). https://doi.org/10.1103/PhysRevD.85.104048. [arXiv:1202.5800 [gr-qc]]

    Article  ADS  Google Scholar 

  74. J.S. Schwinger, J. Math. Phys. 2, 407–432 (1961). https://doi.org/10.1063/1.1703727

    Article  ADS  Google Scholar 

  75. K.T. Mahanthappa, Phys. Rev. 126, 329–340 (1962). https://doi.org/10.1103/PhysRev.126.329

    Article  ADS  MathSciNet  Google Scholar 

  76. P.M. Bakshi, K.T. Mahanthappa, J. Math. Phys. 4, 1–11 (1963). https://doi.org/10.1063/1.1703883

    Article  ADS  Google Scholar 

  77. P.M. Bakshi, K.T. Mahanthappa, J. Math. Phys. 4, 12–16 (1963). https://doi.org/10.1063/1.1703879

    Article  ADS  Google Scholar 

  78. L.V. Keldysh, Zh. Eksp, Teor. Fiz. 47, 1515–1527 (1964)

    Google Scholar 

  79. K. c. Chou, Z. b. Su, B. l. Hao and L. Yu, Phys. Rept. 118, 1-131 (1985) https://doi.org/10.1016/0370-1573(85)90136-X

  80. R.D. Jordan, Phys. Rev. D 33, 444–454 (1986). https://doi.org/10.1103/PhysRevD.33.444

    Article  ADS  MathSciNet  Google Scholar 

  81. E. Calzetta, B.L. Hu, Phys. Rev. D 35, 495 (1987). https://doi.org/10.1103/PhysRevD.35.495

    Article  ADS  MathSciNet  Google Scholar 

  82. L.H. Ford, R.P. Woodard, Class. Quant. Grav. 22, 1637–1647 (2005). https://doi.org/10.1088/0264-9381/22/9/011. [arXiv:gr-qc/0411003 [gr-qc]]

    Article  ADS  Google Scholar 

  83. S.P. Miao, T. Prokopec, R.P. Woodard, Phys. Rev. D 96(10), 104029 (2017). https://doi.org/10.1103/PhysRevD.96.104029. [arXiv:1708.06239 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  84. S. Katuwal, R.P. Woodard, JHEP 21, 029 (2020). https://doi.org/10.1007/JHEP10(2021)029. [arXiv:2107.13341 [gr-qc]]

    Article  Google Scholar 

  85. S. Weinberg, Phys. Rev. 140, B516–B524 (1965). https://doi.org/10.1103/PhysRev.140.B516

    Article  ADS  Google Scholar 

  86. G. Veneziano, Nucl. Phys. B 44, 142–148 (1972). https://doi.org/10.1016/0550-3213(72)90275-1

    Article  ADS  Google Scholar 

  87. D. Marolf, I.A. Morrison, M. Srednicki, Class. Quant. Grav. 30, 155023 (2013). https://doi.org/10.1088/0264-9381/30/15/155023. [arXiv:1209.6039 [hep-th]]

    Article  ADS  Google Scholar 

  88. S.P. Miao, N.C. Tsamis, R.P. Woodard, JHEP 03, 069 (2022). https://doi.org/10.1007/JHEP03(2022)069. [arXiv:2110.08715 [gr-qc]]

    Article  ADS  Google Scholar 

  89. H.J. Borchers, Il Nuovo Cimento 15, 784–794 (1960). https://doi.org/10.1007/BF02732693

    Article  ADS  Google Scholar 

  90. R. P. Woodard and B. Yesilyurt, [arXiv:2302.11528 [gr-qc]]

  91. D. Glavan, S.P. Miao, T. Prokopec, R.P. Woodard, Class. Quant. Grav. 31, 175002 (2014). https://doi.org/10.1088/0264-9381/31/17/175002. [arXiv:1308.3453 [gr-qc]]

    Article  ADS  Google Scholar 

  92. C.L. Wang, R.P. Woodard, Phys. Rev. D 91(12), 124054 (2015). https://doi.org/10.1103/PhysRevD.91.124054. [arXiv:1408.1448 [gr-qc]]

    Article  ADS  Google Scholar 

  93. S.P. Miao, R.P. Woodard, Phys. Rev. D 74, 024021 (2006). https://doi.org/10.1103/PhysRevD.74.024021. [arXiv:gr-qc/0603135 [gr-qc]]

    Article  ADS  Google Scholar 

  94. D. Glavan, S.P. Miao, T. Prokopec, R.P. Woodard, JHEP 03, 088 (2022). https://doi.org/10.1007/JHEP03(2022)088. [arXiv:2112.00959 [gr-qc]]

    Article  ADS  Google Scholar 

  95. L. Tan, N.C. Tsamis, R.P. Woodard, Universe 8(7), 376 (2022). https://doi.org/10.3390/universe8070376. [arXiv:2206.11467 [gr-qc]]

    Article  ADS  Google Scholar 

  96. V.K. Onemli, R.P. Woodard, Class. Quant. Grav. 19, 4607 (2002). https://doi.org/10.1088/0264-9381/19/17/311. [arXiv:gr-qc/0204065 [gr-qc]]

    Article  ADS  Google Scholar 

  97. V.K. Onemli, R.P. Woodard, Phys. Rev. D 70, 107301 (2004). https://doi.org/10.1103/PhysRevD.70.107301. [arXiv:gr-qc/0406098 [gr-qc]]

    Article  ADS  Google Scholar 

  98. A.A. Starobinsky, Lect. Notes Phys. 246, 107–126 (1986). https://doi.org/10.1007/3-540-16452-9_6

    Article  ADS  Google Scholar 

  99. A.A. Starobinsky, Lect. Notes Phys. 246, 107–126 (1986). https://doi.org/10.1103/PhysRevD.50.6357. [arXiv:astro-ph/9407016 [astro-ph]]

    Article  ADS  Google Scholar 

  100. C. Litos, R. P. Woodard and B. Yesilyurt, [arXiv:2306.15486 [gr-qc]]

  101. W. Pauli, Helv. Phys. Acta Suppl. 4, 58–71 (1956)

    MathSciNet  Google Scholar 

  102. S. Deser, Rev. Mod. Phys. 29, 417 (1957). https://doi.org/10.1103/RevModPhys.29.417

    Article  ADS  MathSciNet  Google Scholar 

  103. L.H. Ford, Int. J. Theor. Phys. 44, 1753–1768 (2005). https://doi.org/10.1007/s10773-005-8893-z. [arXiv:gr-qc/0501081 [gr-qc]]

    Article  Google Scholar 

  104. A. Marunovic, T. Prokopec, Phys. Rev. D 83, 104039 (2011). https://doi.org/10.1103/PhysRevD.83.104039. [arXiv:1101.5059 [gr-qc]]

    Article  ADS  Google Scholar 

  105. T.J. Hollowood, G.M. Shore, JHEP 03, 129 (2016). https://doi.org/10.1007/JHEP03(2016)129. [arXiv:1512.04952 [hep-th]]

    Article  ADS  Google Scholar 

  106. C. de Rham, A.J. Tolley, J. Zhang, Phys. Rev. Lett. 128(13), 131102 (2022). https://doi.org/10.1103/PhysRevLett.128.131102. [arXiv:2112.05054 [gr-qc]]

    Article  ADS  Google Scholar 

  107. M. Carrillo González, C. de Rham, S. Jaitly, V. Pozsgay, A. Tokareva, [arXiv:2307.04784 [hep-th]]

  108. K.E. Leonard, R.P. Woodard, Class. Quant. Grav. 31, 015010 (2014). https://doi.org/10.1088/0264-9381/31/1/015010. [arXiv:1304.7265 [gr-qc]]

    Article  ADS  Google Scholar 

  109. A.F. Radkowski, Ann. Phys. 56, 319–354 (1970). https://doi.org/10.1016/0003-4916(70)90021-7

    Article  ADS  Google Scholar 

  110. E. Kasdagli, M. Ulloa, R.P. Woodard, Phys. Rev. D 107(10), 105023 (2023). https://doi.org/10.1103/PhysRevD.107.105023. [arXiv:2302.04808 [gr-qc]]

    Article  ADS  Google Scholar 

  111. R. P. Woodard, B. Yesilyurt, [arXiv:2305.17641 [gr-qc]]

  112. P. Horava, JHEP 03, 020 (2009). https://doi.org/10.1088/1126-6708/2009/03/020. [arXiv:0812.4287 [hep-th]]

    Article  ADS  Google Scholar 

  113. P. Horava, Phys. Rev. D 79, 084008 (2009). https://doi.org/10.1103/PhysRevD.79.084008. [arXiv:0901.3775 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  114. S. Mukohyama, Class. Quant. Grav. 27, 223101 (2010). https://doi.org/10.1088/0264-9381/27/22/223101. [arXiv:1007.5199 [hep-th]]

    Article  ADS  Google Scholar 

  115. A.O. Barvinsky, D. Blas, M. Herrero-Valea, S.M. Sibiryakov, C.F. Steinwachs, Phys. Rev. D 93(6), 064022 (2016). https://doi.org/10.1103/PhysRevD.93.064022. [arXiv:1512.02250 [hep-th]]

    Article  ADS  MathSciNet  Google Scholar 

  116. S. Carlip, Stud. Hist. Phil. Sci. B 46, 200–208 (2014). https://doi.org/10.1016/j.shpsb.2012.11.002. [arXiv:1207.2504 [gr-qc]]

    Article  Google Scholar 

  117. E.P. Verlinde, SciPost Phys. 2(no.3), 016 (2017). https://doi.org/10.21468/SciPostPhys.2.3.016. [arXiv:1611.02269 [hep-th]]

  118. S. Hossenfelder, Phys. Rev. D 95(12), 124018 (2017). https://doi.org/10.1103/PhysRevD.95.124018. [arXiv:1703.01415 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  119. J. Ambjorn, A. Goerlich, J. Jurkiewicz, R. Loll, Phys. Rept. 519, 127–210 (2012). https://doi.org/10.1016/j.physrep.2012.03.007. [arXiv:1203.3591 [hep-th]]

    Article  ADS  Google Scholar 

  120. J. Laiho, S. Bassler, D. Du, J.T. Neelakanta, D. Coumbe, Acta Phys. Polon. Supp. 10, 317–320 (2017). https://doi.org/10.5506/APhysPolBSupp.10.317. [arXiv:1701.06829 [hep-th]]

    Article  Google Scholar 

  121. J. Ambjorn, J. Gizbert-Studnicki, A. Görlich, J. Jurkiewicz, R. Loll, Front. in Phys. 8, 247 (2020). https://doi.org/10.3389/fphy.2020.00247. [arXiv:2002.01693 [hep-th]]

    Article  ADS  Google Scholar 

  122. G. Dvali, G.F. Giudice, C. Gomez, A. Kehagias, JHEP 08, 108 (2011). https://doi.org/10.1007/JHEP08(2011)108. [arXiv:1010.1415 [hep-ph]]

    Article  ADS  Google Scholar 

  123. G. Dvali, C. Gomez, R.S. Isermann, D. Lüst, S. Stieberger, Nucl. Phys. B 893, 187–235 (2015). https://doi.org/10.1016/j.nuclphysb.2015.02.004. [arXiv:1409.7405 [hep-th]]

    Article  ADS  Google Scholar 

  124. R. Arnowitt, S. Deser, C.W. Misner, Phys. Rev. Lett. 4, 375–377 (1960). https://doi.org/10.1103/PhysRevLett.4.375

    Article  ADS  Google Scholar 

  125. R. P. Woodard, [arXiv:gr-qc/9803096 [gr-qc]]

  126. R. Casadio, J. Phys. Conf. Ser. 174, 012058 (2009). https://doi.org/10.1088/1742-6596/174/1/012058. [arXiv:0902.2939 [gr-qc]]

    Article  Google Scholar 

  127. R. Casadio, R. Garattini, F. Scardigli, Phys. Lett. B 679, 156–159 (2009). https://doi.org/10.1016/j.physletb.2009.06.076. [arXiv:0904.3406 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  128. P.J. Mora, N.C. Tsamis, R.P. Woodard, Class. Quant. Grav. 29, 025001 (2012). https://doi.org/10.1088/0264-9381/29/2/025001. [arXiv:1108.4367 [gr-qc]]

    Article  ADS  Google Scholar 

  129. R.L. Arnowitt, S. Deser, C.W. Misner, Phys. Rev. 116, 1322–1330 (1959). https://doi.org/10.1103/PhysRev.116.1322

    Article  ADS  MathSciNet  Google Scholar 

  130. J.M. Maldacena, JHEP 05, 013 (2003). https://doi.org/10.1088/1126-6708/2003/05/013. [arXiv:astro-ph/0210603 [astro-ph]]

    Article  ADS  Google Scholar 

  131. D. Seery, J.E. Lidsey, M.S. Sloth, JCAP 01, 027 (2007). https://doi.org/10.1088/1475-7516/2007/01/027. [arXiv:astro-ph/0610210 [astro-ph]]

    Article  ADS  Google Scholar 

  132. P.R. Jarnhus, M.S. Sloth, JCAP 02, 013 (2008). https://doi.org/10.1088/1475-7516/2008/02/013. [arXiv:0709.2708 [hep-th]]

    Article  ADS  Google Scholar 

  133. W. Xue, X. Gao, R. Brandenberger, JCAP 06, 035 (2012). https://doi.org/10.1088/1475-7516/2012/06/035. [arXiv:1201.0768 [hep-th]]

    Article  ADS  Google Scholar 

  134. A.A. Starobinsky, JETP Lett. 86, 157–163 (2007). https://doi.org/10.1134/S0021364007150027. [arXiv:0706.2041 [astro-ph]]

    Article  ADS  Google Scholar 

  135. J. Fehre, D.F. Litim, J.M. Pawlowski, M. Reichert, Phys. Rev. Lett. 130(8), 081501 (2023). https://doi.org/10.1103/PhysRevLett.130.081501. [arXiv:2111.13232 [hep-th]]

    Article  ADS  Google Scholar 

  136. D. Benedetti, P.F. Machado, F. Saueressig, A.I.P. Conf, Proc. 1196(1), 44 (2009). https://doi.org/10.1063/1.3284399. [arXiv:0909.3265 [hep-th]]

    Article  Google Scholar 

  137. J.F. Donoghue, Front. in Phys. 8, 56 (2020). https://doi.org/10.3389/fphy.2020.00056. [arXiv:1911.02967 [hep-th]]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I am grateful for civil discussion and correspondence on this subject with J. F. Donoghue, B. Holdom and P. D. Mannheim. This work was supported by NSF grant PHY-2207514 and by the Institute for Fundamental Theory at the University of Florida.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. P. Woodard.

Additional information

Dedicated to the memory of Stanley Deser: teacher, mentor, friend.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woodard, R.P. Don’t throw the baby out with the bath water. Eur. Phys. J. Plus 138, 1067 (2023). https://doi.org/10.1140/epjp/s13360-023-04709-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04709-4

Navigation