Skip to main content
Log in

First results of the LARES 2 space experiment to test the general theory of relativity

  • Letter to the Editor
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The LAGEOS 3 (today LARES 2) space experiment was proposed in the eighties by the Physics Department and by the Center of Space Research (CSR) of the University of Texas (UT) at Austin and by the Italian Space Agency (ASI) to test and accurately measure frame-dragging, with the strong support of John Archibald Wheeler, director of the Center for Theoretical Physics of UT Austin. Frame-dragging is an intriguing phenomenon predicted by Einstein’s theory of general relativity which has fundamental implications in high-energy astrophysics and in the generation of gravitational waves by spinning black holes. LAGEOS 3 was reproposed in 2016 to the Italian Space Agency and to the European Space Agency as a technologically much improved version of LAGEOS 3 under the name LARES 2 (LAres RElativity Satellite 2) and then successfully launched in 2022 with the new launch vehicle VEGA C of ASI, ESA and AVIO. Today, after almost 40 years since the original proposal, we report the first results of the LARES 2 space experiment to test general relativity. The results are in complete agreement with the predictions of Einstein’s gravitational theory. Whereas previous results already confirmed the frame-dragging prediction, the conceptual relative simplicity of the LARES 2 experiment with respect to the previous tests with the LARES and LAGEOS satellites provides a significant advance in the field of tests of general relativity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

Satellites Laser Ranging (SLR) data of LARES 2 and LAGEOS are available at the NASA CDDIS (Crustal Dynamics Data Information System) as well as the ILRS European Data Center (EDC).

References

  1. A. Einstein. Letter to Ernst Mach, 25 June 1913. In: C. Misner, K.S. Thorne, J.A. Wheeler. Gravitation (Freeman, San Francisco, 1973), p. 544 (ref. [5])

  2. K.S. Thorne, R.H. Price, D.A. Macdonald, The membrane paradigm (Yale University Press, New Haven, 1986)

    MATH  Google Scholar 

  3. R.F. O’Connell, A Note on frame dragging. Class. Quant. Grav. 22(17), 3815–3016 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. R.F. O’Connell, Proposed new test of spin effects in general relativity. Phys. Rev. Lett. 93, 081103 (2004)

    Article  ADS  Google Scholar 

  5. C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (Freeman, San Francisco, 1973)

    Google Scholar 

  6. S.W. Hawking, G.F.R. Ellis, The Large Scale Structure of Space–Time (Cambridge University Press, Cambridge, 1975)

    MATH  Google Scholar 

  7. I. Ciufolini, J.A. Wheeler, Gravitation and Inertia (Princeton University Press, Princeton, 1995)

    Book  MATH  Google Scholar 

  8. Y.B. Zeldovich, I.D. Novikov, Relativistic Astrophysics. Stars and Relativity, vol. I (University of Chicago Press, Chicago, 1971)

    Google Scholar 

  9. S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (Wiley, New York, 1972)

    Google Scholar 

  10. R. Penrose, Gravitational collapse and space-time singularities. Phys. Rev. Lett. 14(3), 57–59 (1965)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. B.P. Abbott et al., Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  12. Y. Cui et al., Precessing jet nozzle connecting to a spinning black hole in M87. Nature 621, 711 (2023)

    Article  ADS  Google Scholar 

  13. K. Goedel, Rotating universes in general relativity theory, in Proceeding of the 1950 International Congress of Mathematicians, vol. I, p. 175 (1950)

  14. K. Goedel, An example of a new type of cosmological solutions of Einstein’s field equations of gravitation. Rev. Modern Phys. 21(3), 447–450 (1949)

    Article  ADS  MathSciNet  Google Scholar 

  15. T.L. Smith, A. Erickcek, R. Caldwell, M. Kamionkowski, Effects of Chern-Simons gravity on bodies orbiting the Earth. Phys. Rev. D 77, 024015 (2008)

    Article  ADS  Google Scholar 

  16. A. Stephon, N. Yunes, New post-Newtonian parameter to test Chern-Simons Gravity. Phys. Rev. Lett. 99, 241101 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. S.G. Turyshev, Experimental tests of general relativity: recent progress and future directions. Phys.-Usp. 52(1), 1–36 (2009)

    Article  ADS  Google Scholar 

  18. C.M. Will. The confrontation between general relativity and experiment. Living Rev. Relat. 17, Article number 4 (2014)

  19. W.-T. Ni, Solar-system tests of the relativistic gravity. Int. J. Modern Phys. D 25(14), 1630003 (2016)

    Article  ADS  MATH  Google Scholar 

  20. S. Kopeikin (ed.), Frontiers in relativistic celestial mechanics. Applications and experiments, vol. 2 (de Gruyter, Berlin, 2014)

    MATH  Google Scholar 

  21. A.G. Riess, The expansion of the universe is faster than expected. Nat. Rev. Phys. 2, 10–12 (2020)

    Article  Google Scholar 

  22. I. Ciufolini, Measurement of the Lense-Thirring drag on high-altitude laser-ranged artificial satellites. Phys. Rev. Lett. 56, 278–281 (1986)

    Article  ADS  Google Scholar 

  23. I. Ciufolini, A comprehensive introduction to the LAGEOS gravimetric experiment. Int. J. Mod. Phys. A 4(13), 3083–3145 (1989)

    Article  ADS  Google Scholar 

  24. B. Tapley, J.C. Ries, R.J. Eanes, M.M. Watkins. NASA-ASI Study on LAGEOS III, CSR-UT publication n. CSR-89-3, Austin, Texas (1989)

  25. I. Ciufolini et al., ASI-NASA Study on LAGEOS III (CNR, Rome, 1989)

    Google Scholar 

  26. I. Ciufolini, Theory and experiments in general relativity and other metric theories, Ph.D. dissertation (Univ. of Texas, Austin, 1984).

  27. J.C. Ries, Simulation of an experiment to measure the Lense-Thirring precession using a second LAGEOS satellite, Ph.D. dissertation (Univ. of Texas, Austin, 1989).

  28. G.E. Peterson, Estimation of the lense-thirring precession using laser-ranged satellites, Ph.D. dissertation (Univ. of Texas, Austin, 1997).

  29. I. Ciufolini, A. Paolozzi, E.C. Pavlis, G. Sindoni, J. Ries, R. Matzner, R. Koenig, C. Paris, V. Gurzadyan, R. Penrose, An improved test of the general relativistic effect of frame-dragging using the LARES and LAGEOS satellites. Eur. Phys. J. C 79(10), Article number 872 (2019)

  30. See also: C.W. Everitt et al. Gravity Probe B: Final results of a space experiment to test general relativity. Phys. Rev. Lett. 106, 22110 (2011)

  31. I. Ciufolini, A. Paolozzi, E.C. Pavlis, G. Sindoni, R. Koenig, J.C. Ries, R. Matzner, V. Gurzadyan, R. Penrose, D. Rubincam, C. Paris, A new laser-ranged satellite for general relativity and space geodesy. I. Introduction to the LARES 2 space experiment. Eur. Phys. J. Plus 132, 336 (2017)

    Article  Google Scholar 

  32. I. Ciufolini, E.C. Pavlis, G. Sindoni, J.C. Ries, A. Paolozzi, R. Koenig, C. Paris, A new laser-ranged satellite for general relativity and space geodesy. II. Monte Carlo simulations and covariance analyses of the LARES 2 experiment. Eur. Phys. J. Plus 132, 337 (2017)

    Article  Google Scholar 

  33. I. Ciufolini, R. Matzner, V. Gurzadyan, R. Penrose, A new laser-ranged satellite for general relativity and space geodesy. III. De Sitter effect and the LARES 2 space experiment. Eur. Phys. J. C 76, 120 (2016)

    Article  ADS  Google Scholar 

  34. I. Ciufolini, R.A. Matzner, J.C. Feng, A. Paolozzi, D.P. Rubincam, E.C. Pavlis, J.C. Ries, G. Sindoni, C. Paris, A new laser-ranged satellite for general relativity and space geodesy: IV. Thermal drag and the LARES 2 space experiment. Eur. Phys. J. Plus 133, 333 (2018)

    Article  Google Scholar 

  35. W.M. Kaula, Theory of Satellite Geodesy (Blaisdell, Waltham, 1966)

    MATH  Google Scholar 

  36. IERS Technical Note No. 36, IERS Conventions, Gerard Petit and Brian Luzum eds. (2010)

  37. V. Gurzadyan, I. Ciufolini, H. Khachatryan, S. Mirzoyan, A. Paolozzi, G. Sindoni, On the Earth’s tidal perturbations for the LARES satellite. European Physical Journal Plus 132, 538 (2017)

    Article  ADS  Google Scholar 

  38. I. Ciufolini, A. Paolozzi. Procedura di analisi orbitale ottimizzata su satelliti sferici con retroriflettori per la misura di fisica fondamentale del “frame-dragging” con un errore minore del 2 per mille, Brevetto per modello di utilità n. 202023000004098, Ministero delle Imprese e del Made in Italy, 6 Oct 2023

  39. A. Paolozzi, C. Paris, G. Sindoni, I. Ciufolini. Patent n. 10000074174, Nuovo satellite sferico con retroriflettori per fisica fondamentale e scienze della terra (2017)

  40. A. Paolozzi, G. Sindoni, F. Felli, D. Pilone, A. Brotzu, I. Ciufolini, E.C. Pavlis, C. Paris, Studies on the materials of LARES 2 satellite. J. Geod.Geod. 93(11), 2437–2446 (2019)

    Article  ADS  Google Scholar 

  41. D.P. Rubincam, LAGEOS orbit decay due to infrared radiation from Earth. J. Geophys. Res. 92(B2), 1287–1294 (1987)

    Article  ADS  Google Scholar 

  42. D.P. Rubincam, Yarkovsky thermal drag on LAGEOS. J. Geophys. Res. 93(B11), 13805–13810 (1988)

    Article  ADS  Google Scholar 

  43. M.R. Pearlman, C.E. Noll, E.C. Pavlis et al., The ILRS: approaching 20 years and planning for the future. J. Geod. 93(9), 2161–2180 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Italian Space Agency for having funded the design of the LARES 2 satellite under agreement n. 2017-23-H.0 and the orbital analysis of LARES 2 under the agreement “Attività di analisi dei dati scientifici della missione LARES 2”, the European Space Agency and AVIO for the VEGA C inaugural flight and the International Laser Ranging Service [43] for tracking the satellites and providing the laser ranging data. E.C. Pavlis acknowledges the support of NASA Grant 80NSSC22M0001 and computational resources provided by NASA’s High-End Computing (HEC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahe Gurzadyan.

Additional information

Paper dedicated to John Archibald Wheeler, a key figure of fundamental physics of the XX century and vigorous supporter of the LAGEOS 3/LARES 2 space experiment to test general relativity.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciufolini, I., Paris, C., Pavlis, E.C. et al. First results of the LARES 2 space experiment to test the general theory of relativity. Eur. Phys. J. Plus 138, 1054 (2023). https://doi.org/10.1140/epjp/s13360-023-04696-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04696-6

Navigation