Skip to main content
Log in

Topological phase transitions in a honeycomb ferromagnet with unequal Dzyaloshinskii-Moriya interactions

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This theoretical research is devoted to studying topological phase transitions in a two-dimensional honeycomb ferromagnetic lattice with unequal Dzyaloshinskii-Moriya interactions for the two sublattices. With the help of a first-order Green’s function formalism, we analyze the influence of magnon-magnon interaction on the magnon band topology. It is found that the existence of the antichiral Dzyaloshinskii-Moriya interaction can led to a tilting of the renormalized magnon bands near the Dirac momenta. Then, the renormalized magnon band gaps at Dirac points have different widths. Through changing the temperature, we can observe the renormalized magnon band gap closing-reopening phenomenon, which corresponds to the topological phase transition. Our results show that the critical temperature of the topological phase transition is linked to the strength of the antichiral Dzyaloshinskii-Moriya interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

No Data associated in the manuscript.

References

  1. F.D.M. Haldane, Phys. Rev. Lett. 61, 2015 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  2. C.L. Kane, E.J. Mele, Phys. Rev. Lett. 95, 146802 (2005)

    Article  ADS  Google Scholar 

  3. H. Katsura, N. Nagaosa, P.A. Lee, Phys. Rev. Lett. 104, 066403 (2010)

    Article  ADS  Google Scholar 

  4. Y. Onose, T. Ideue, H. Katsura, Y. Shiomi, N. Nagaosa, Y. Tokura, Science 329, 297 (2010)

    Article  ADS  Google Scholar 

  5. R. Matsumoto, S. Murakami, Phys. Rev. Lett. 106, 197202 (2011)

    Article  ADS  Google Scholar 

  6. J. Romhányi, K. Totsuka, K. Penc, Phys. Rev. B 83, 024413 (2011)

    Article  ADS  Google Scholar 

  7. J. Romhányi, M. Lajkó, K. Penc, Phys. Rev. B 84, 224419 (2011)

    Article  ADS  Google Scholar 

  8. J. Romhányi, K. Penc, R. Ganesh, Nat. Commun. 6, 6805 (2015)

    Article  ADS  Google Scholar 

  9. L. Zhang, J. Ren, J.-S. Wang, B. Li, Phys. Rev. B 87, 144101 (2013)

    Article  ADS  Google Scholar 

  10. R. Matsumoto, R. Shindou, S. Murakami, Phys. Rev. B 89, 054420 (2014)

    Article  ADS  Google Scholar 

  11. S.A. Owerre, J. Phys. Condens. Matter 28, 386001 (2016)

    Article  ADS  Google Scholar 

  12. W. Feng, L. Wu, B. Tang, K. Deng, Int. J. Theor. Phys. 60, 1438 (2021)

    Article  Google Scholar 

  13. H. Sun, B. Li, J. Zhao, J. Phys. Condens. Matter 28, 425301 (2016)

    Article  Google Scholar 

  14. Z. Zhang, W. Feng, Y. Yao, B. Tang, Phys. Lett. A 414, 127630 (2021)

    Article  Google Scholar 

  15. Z.-X. Li, Y. Cao, P. Yan, Phys. Rep. 915, 1 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  16. S. Chakravarty, B.I. Halperin, D.R. Nelson, Phys. Rev. B 39, 2344 (1989)

    Article  ADS  Google Scholar 

  17. R.S.K. Mong, A.M. Essin, J.E. Moore, Phys. Rev. B 81, 245209 (2010)

    Article  ADS  Google Scholar 

  18. L. Lu, J.D. Joannopoulos, M. Soljačić, Nat. Photon. 8, 821–829 (2014)

    Article  ADS  Google Scholar 

  19. F. Flamini, N. Spagnolo, F. Sciarrino, Rep. Prog. Phys. 82, 016001 (2018)

    Article  ADS  Google Scholar 

  20. X.-D. Chen, W.-M. Deng, F.-L. Shi, F.-L. Zhao, M. Chen, J.-W. Dong, Phys. Rev. Lett. 122, 233902 (2019)

    Article  ADS  Google Scholar 

  21. Y. Pennec, J.O. Vasseur, B. Djafari-Rouhani, L. Dobrzyński, P.A. Deymier, Surf. Sci. Rep. 65, 229291 (2010)

    Article  Google Scholar 

  22. M. Serra-Garcia, V. Peri, R. Süsstrunk, O.R. Bilal, T. Larsen, L.G. Villanueva, S.D. Huber, Nature 555, 342–345 (2018)

    Article  ADS  Google Scholar 

  23. V.V. Kruglyak, R.J. Hicken, J. Magn. Magn. Mater. 306, 191 (2006)

    Article  ADS  Google Scholar 

  24. A.A. Serga, A.V. Chumak, B. Hillebrands, J. Phys. D 43, 264002 (2010)

    Article  ADS  Google Scholar 

  25. K. Nakata, S.K. Kim, J. Klinovaja, D. Loss, Phys. Rev. B 96, 224414 (2017)

    Article  ADS  Google Scholar 

  26. M. Krawczyk, D. Grundler, J. Phys. Condens. Matter 26, 123202 (2014)

    Article  Google Scholar 

  27. F. Bloch, Z. Phys. 61, 206 (1930)

    Article  ADS  Google Scholar 

  28. C. Kittel, Phys. Rev. 73, 155 (1948)

    Article  ADS  Google Scholar 

  29. O. Büttner, M. Bauer, A. Rueff, S.O. Demokritov, B. Hillebrands, A.N. Slavin, M.P. Kostylev, B.A. Kalinikos, Ultrasonics 38, 443 (2000)

    Article  Google Scholar 

  30. A.V. Inyushkin, A.N. Taldenkov, JETP Lett. 86, 379 (2007)

    Article  ADS  Google Scholar 

  31. S. Murakami, A. Okamoto, J. Phys. Soc. Jpn. 86, 011010 (2017)

    Article  ADS  Google Scholar 

  32. S.A. Owerre, J. Appl. Phys. 120, 043903 (2016)

    Article  ADS  Google Scholar 

  33. S.A. Owerre, Phys. Rev. B 95, 014422 (2017)

    Article  ADS  Google Scholar 

  34. M. Hirschberger, R. Chisnell, Y.S. Lee, N.P. Ong, Phys. Rev. Lett. 115, 106603 (2015)

    Article  ADS  Google Scholar 

  35. S.S. Pershoguba, S. Banerjee, J.C. Lashley, J. Park, H. Ågren, G. Aeppli, A.V. Balatsky, Phys. Rev. X 8, 011010 (2018)

    Google Scholar 

  36. M.E. Zhitomirsky, A.L. Chernyshev, Rev. Mod. Phys. 85, 219 (2013)

    Article  ADS  Google Scholar 

  37. S.K. Kim, H. Ochoa, R. Zarzuela, Y. Tserkovnyak, Phys. Rev. Lett. 117, 227201 (2016)

    Article  ADS  Google Scholar 

  38. A. Mook, K. Plekhanov, J. Klinovaja, D. Loss, Phys. Rev. X 11, 021061 (2021)

    Google Scholar 

  39. Y.-S. Lu, J.-L. Li, C.-T. Wu, Phys. Rev. Lett. 127, 217202 (2021)

    Article  ADS  Google Scholar 

  40. H. Sun, D. Bhowmick, B. Yang, P. Sengupta, Phys. Rev. B 107, 134426 (2023)

    Article  ADS  Google Scholar 

  41. L. Chen, J.-H. Chung, B. Gao, T. Chen, M.B. Stone, A.I. Kolesnikov, Q. Huang, P. Dai, Phys. Rev. X 8, 041028 (2018)

    Google Scholar 

  42. Z. Cai, S. Bao, Z.-L. Gu, Y.-P. Gao, Z. Ma, Y. Shangguan, W. Si, Z.-Y. Dong, W. Wang, Y. Wu, D. Lin, J. Wang, K. Ran, S. Li, D. Adroja, X. Xi, S.-L. Yu, X. Wu, J.-X. Li, J. Wen, Phys. Rev. B 104, L020402 (2021)

    Article  ADS  Google Scholar 

  43. D. Bhowmick, P. Sengupta, Phys. Rev. B 101, 195133 (2020)

    Article  ADS  Google Scholar 

  44. T. Holstein, H. Primakoff, Phys. Rev. 58, 1098 (1940)

    Article  ADS  Google Scholar 

  45. W.B. Yelon, R. Silberglitt, Phys. Rev. B 4, 2280 (1971)

    Article  ADS  Google Scholar 

  46. E.J. Samuelsen, R. Silberglitt, G. Shirane, J.P. Remeika, Phys. Rev. B 3, 157 (1971)

    Article  ADS  Google Scholar 

  47. L.J.P. Ament, M.V. Veenendaal, T.P. Devereaux, J.P. Hill, J.V.D. Brink, Rev. Mod. Phys. 83, 705 (2011)

    Article  ADS  Google Scholar 

  48. P.A. Fleury, S.P.S. Porto, L.E. Cheesman, H.J. Guggenheim, Phys. Rev. Lett. 17, 84 (1966)

    Article  ADS  Google Scholar 

  49. B. Hillebrands, P. Baumgart, G. Güntherodt, Appl. Phys. A 49, 589–598 (1989)

    Article  ADS  Google Scholar 

  50. S.O. Demokritov, B. Hillebrands, A.N. Slavin, Phys. Rep. 348, 441–489 (2001)

    Article  ADS  Google Scholar 

  51. W. Feng, B. Tang, L. Wu, P. Kong, C. Yang, L. Wang, K. Deng, J. Magn. Magn. Mater. 536, 168089 (2021)

    Article  Google Scholar 

  52. D. Xiao, M.-C. Chang, Q. Niu, Rev. Mod. Phys. 82, 1959 (2010)

    Article  ADS  Google Scholar 

  53. H. Sun, P. Sengupta, D. Nam, B. Yang, Phys. Rev. B 103, L140404 (2021)

    Article  ADS  Google Scholar 

  54. H. Kim, S.K. Kim, Phys. Rev. B 106, 104430 (2022)

    Article  ADS  Google Scholar 

  55. Y.-M. Li, X.-W. Luo, K. Chang, Phys. Rev. B 107, 214417 (2023)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We want to thank Dr. Hao Sun for many useful suggestions. This work was supported by the National Natural Science Foundation of China under Grant No. 12064011, the Natural Science Fund Project of Hunan Province under Grant No. 2020JJ4498 and the Graduate Research Innovation Foundation of Jishou University under Grant No. Jdy21030.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Tang.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Shi, H., Tang, Z. et al. Topological phase transitions in a honeycomb ferromagnet with unequal Dzyaloshinskii-Moriya interactions. Eur. Phys. J. Plus 138, 1045 (2023). https://doi.org/10.1140/epjp/s13360-023-04695-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04695-7

Navigation