Skip to main content
Log in

Propagation of Tricomi beams in a gradient-index medium

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Based on the generalized Huygens-Fresnel diffraction theory and ABCD transfer theory, analytical expression for a newly proposed Tricomi beam propagating through a gradient-index medium is derived. The targeted beam’s propagation trajectory, intensity profile, and phase distribution are investigated. Impact of the beam’s complex parameters α and β, and topological charge n on the propagation properties are discussed in detail. It is shown that by selecting appropriate complex parameters α and β, Tricomi beams can degenerate into standard, asymmetric, off-axis Bessel beams, or sheet beams. While propagating in a gradient-index medium, Tricomi beams would be focused at two singularities within one period L, and go through periodic propagation. After passing the singularity, the transverse intensity pattern reconstructs itself and experiences symmetric inversion. Furthermore, propagation trajectory of the superimposed beam becomes visible and the main lobe splits. As the topological charge n increases, the peak intensity gradually diminishes, and meanwhile, the peak intensity position undergoes a shift. These findings presented in this article are of significant importance for prospective applications in the field of optical control, trapping, and optical communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

No data associated in the manuscript.

References

  1. J. Durnin, J. Opt. Soc. Am. A 4, 651 (1987)

    Article  ADS  Google Scholar 

  2. J. Durnin, J.J. Miceli, J.H. Eberly, Phys. Rev. Lett. 58, 1499 (1987)

    Article  ADS  Google Scholar 

  3. D. McGloin, K. Dholakia, Contemp. Phys. 46, 15 (2005)

    Article  ADS  Google Scholar 

  4. J.C. Gutiérrez-Vega, M.D. Iturbe-Castillo, S. Chávez-Cerda, Opt. Lett. 25, 1493 (2000)

    Article  ADS  Google Scholar 

  5. J.C. Gutiérrez-Vega, M.D. Iturbe-Castillo, G.A. Ramirez, E. Tepichin, R.M. Rodriguez-Dagnino, S. Chávez-Cerda, G.H.C. New, Opt. Commun. 195, 35 (2001)

    Article  ADS  Google Scholar 

  6. M.A. Bandres, J.C. Gutiérrez-Vega, S. Chávez-Cerda, Opt. Lett. 29, 44 (2004)

    Article  ADS  Google Scholar 

  7. M.V. Berry, N.L. Balazs, Am. J. Phys. 47, 264 (1979)

    Article  ADS  Google Scholar 

  8. G.A. Siviloglou, J. Broky, A. Dogariu, D.N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007)

    Article  ADS  Google Scholar 

  9. Q. Zhang, Z. Liu, X. Wang, Eur. Phys. J. Plus 137, 896 (2022)

    Article  Google Scholar 

  10. J.D. Ring, J. Lindberg, A. Mourka, M. Mazilu, K. Dholakia, M.R. Dennis, Opt. Express 20, 18955 (2012)

    Article  ADS  Google Scholar 

  11. J.C. Gutiérrez-Vega, M.A. Bandres, J. Opt. Soc. Am. A 22, 289 (2005)

    Article  ADS  Google Scholar 

  12. W.P. Zhong, M.R. Belić, Y. Zhang, Eur. Phys. J. Plus 131, 42 (2016)

    Article  Google Scholar 

  13. J. Zhu, K. Zhu, N. Ding, T. Wang, Results Phys. 28, 104627 (2021)

    Article  Google Scholar 

  14. V.V. Kotlyar, E.G. Abramochkin, A.A. Kovalev, A.G. Nalimov, J. Opt. 24, 065602 (2022)

    Article  ADS  Google Scholar 

  15. A.A. Kovalev, V.V. Kotlyar, Opt. Commun. 338, 117 (2015)

    Article  ADS  Google Scholar 

  16. G. Haïat, S. Naili, Q. Grimal, M. Talmant, C. Desceliers, C. Soize, J. Acoust. Soc. Am. 125, 4043 (2009)

    Article  ADS  Google Scholar 

  17. C. Ma, M.A. Escobar, Z. Liu, Phys. Rev. B 84, 195142 (2011)

    Article  ADS  Google Scholar 

  18. Y. Yang, Q. Zhao, L. Liu, Y. Liu, C. Rosales-Guzmán, C. Qiu, Phys. Rev. Appl. 12, 064007 (2019)

    Article  ADS  Google Scholar 

  19. M. Wang, B. Tian, Eur. Phys. J. Plus 136, 1002 (2021)

    Article  Google Scholar 

  20. V.V. Kotlyar, A.A. Kovalev, A.G. Nalimov, J. Opt. 15, 125706 (2013)

    Article  ADS  Google Scholar 

  21. J. Alda, G.D. Boreman, Appl. Opt. 29, 2944 (1990)

    Article  ADS  Google Scholar 

  22. V. Arrizon, F. Soto-Eguibar, A. Zuñiga-Segundo, H.M. Moya-Cessa, J. Opt. Soc. Am. A 32, 1140 (2015)

    Article  ADS  Google Scholar 

  23. A.A. Kovalev, V.V. Kotlyar, S.G. Zaskanov, J. Opt. Soc. Am. A 31, 914 (2014)

    Article  ADS  Google Scholar 

  24. R. Zhao, F. Deng, W. Yu, J. Huang, D. Deng, J. Opt. Soc. Am. A 33, 1025 (2016)

    Article  ADS  Google Scholar 

  25. L. Feng, J. Zhang, Z. Pang, L. Wang, T. Zhong, X. Yang, D. Deng, Opt. Commun. 402, 60 (2017)

    Article  ADS  Google Scholar 

  26. Z. Cao, C. Zhai, S. Xu, Y. Chen, J. Opt. Soc. Am. A 35, 230 (2018)

    Article  ADS  Google Scholar 

  27. S. Pei, S. Xu, F. Cui, Q. Pan, Z. Cao, Appl. Opt. 58, 920 (2019)

    Article  ADS  Google Scholar 

  28. Y. Hui, Z. Cui, P. Song, Waves Random Complex Media 31, 2514 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  29. J. Turunen, A. T. Friberg, in Progress in Optics (Elsevier, New York, 2010), pp. 1–88

  30. U. Levy, S. Derevyanko, Y. Silberberg, in Progress in Optics (Elsevier, New York, 2016), pp. 237–281

  31. H.E. Hernández-Figueroa, E. Recami, M. Zamboni-Rached (eds.), Non-diffracting waves (Wiley, 2014)

    Google Scholar 

  32. A.E. Siegman, Lasers (University Science Books, 1986)

    Google Scholar 

  33. M.A. Bandres, J.C. Gutiérrez-Vega, Opt. Express 15, 16719 (2007)

    Article  ADS  Google Scholar 

  34. J.N. McMullin, Appl. Opt. 25, 2184 (1986)

    Article  ADS  Google Scholar 

  35. V.V. Kotlyar, A.A. Kovalev, V.A. Soifer, Opt. Lett. 39, 2395 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (12364042), and the Natural Science Foundation of Jiangxi Province (20224ACB201009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhirong Liu.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, Y., Liu, Z. Propagation of Tricomi beams in a gradient-index medium. Eur. Phys. J. Plus 138, 1060 (2023). https://doi.org/10.1140/epjp/s13360-023-04694-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04694-8

Navigation