Skip to main content
Log in

Exploration of dielectric and humidity sensing properties of dysprosium oxide nanorods

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this research work, Dysprosium oxide (Dy2O3) template-free nanorods were prepared by a one-step hydrothermal method. The prepared nanorods were examined by different experimental techniques including X-ray Diffraction (XRD), Thermogravimetric analysis (TGA), Scanning Electron Microscopy (SEM), Photoluminescence spectroscopy. We investigated the dielectric properties using the impedance spectroscopy technique at 20 Hz–2 MHz within a temperature span of 300–540 K. The electrical characteristics like resistance, capacitance, and dielectric constant along with relaxation processes associated with bulk and interface effect were explained using an equivalent circuit model consisting of resistances (R) and constant phase element (CPE) loops in series. DC electrical properties were studied using IV curves in the voltage range of −5 to 5 V at different temperatures. The dominant conduction mechanisms that exist in our material are Schottky thermionic emission and Poole–Franke. Humidity sensing properties of the Dy2O3 nanorods were also studied in the range of 11–97%RH. Relative humidity (RH) sensing characteristic of Dy2O3 nanorods showed a swift response and recovery time of 2 s and 5 s, respectively. The Dy2O3 nanorods displayed a reversible response and a minimal amount of hysteresis 15.6% at 100 Hz. Moreover, the sensitivity calculated for this resistive type sensor is 7.88 MΩ/%RH 100 Hz.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All the data is provided in the manuscript.]

References

  1. M. Salavati-Niasari, J. Javidi, F. Davar, Sonochemical synthesis of Dy2 (CO3) 3 nanoparticles, Dy (OH) 3 nanotubes and their conversion to Dy2O3 nanoparticles. Ultrason. Sonochem. 17(5), 870–877 (2010)

    Article  Google Scholar 

  2. G. Wang, Z. Wang, Y. Zhang, G. Fei, L. Zhang, Controlled synthesis and characterization of large-scale, uniform Dy (OH) 3 and Dy2O3 single-crystal nanorods by a hydrothermal method. Nanotechnology 15(9), 1307 (2004)

    Article  ADS  Google Scholar 

  3. H.-B. Zhao, H.-L. Tu, F. Wei, X.-Q. Zhang, Y.-H. Xiong, J. Du, Resistive switching characteristics of Dy 2 O 3 film with a Pt nanocrystal embedding layer formed by pulsed laser deposition. Rare Met. 33, 75–79 (2014)

    Article  Google Scholar 

  4. T.-M. Pan, C.-H. Lu, Forming-free resistive switching behavior in Nd2O3, Dy2O3, and Er2O3 films fabricated in full room temperature. Appl. Phys. Lett. 99(11), 113509 (2011)

    Article  ADS  Google Scholar 

  5. M. Norek, E. Kampert, U. Zeitler, J.A. Peters, Tuning of the size of Dy2O3 nanoparticles for optimal performance as an MRI contrast agent. J. Am. Chem. Soc. 130(15), 5335–5340 (2008)

    Article  Google Scholar 

  6. K. Kattel, J.Y. Park, W. Xu, H.G. Kim, E.J. Lee, B.A. Bony, W.C. Heo, J.J. Lee, S. Jin, J.S. Baeck, A facile synthesis, in vitro and in vivo MR studies of D-glucuronic acid-coated ultrasmall Ln2O3 (Ln= Eu, Gd, Dy, Ho, and Er) nanoparticles as a new potential MRI contrast agent. ACS Appl. Mater. Interfaces 3(9), 3325–3334 (2011)

    Article  Google Scholar 

  7. D.-X. Chen, V. Skumryev, B. Bozzo, Calibration of ac and dc magnetometers with a Dy2O3 standard. Rev. Sci. Instrum. 82(4), 045112 (2011)

    Article  ADS  Google Scholar 

  8. X. Dong, X. Cheng, X. Zhang, L. Sui, Y. Xu, S. Gao, H. Zhao, L. Huo, A novel coral-shaped Dy2O3 gas sensor for high sensitivity NH3 detection at room temperature. Sens. Actuators, B Chem. 255, 1308–1315 (2018)

    Article  Google Scholar 

  9. C.-Y. Lee, G.-B. Lee, Humidity sensors: a review. Sens. Lett. 3(1–2), 1–15 (2005)

    Article  ADS  Google Scholar 

  10. V.K. Tomer, R. Malik, V. Chaudhary, A. Baruah, Noble metals–metal oxide mesoporous nanohybrids in humidity and gas sensing applications, in Noble Metal-Metal Oxide Hybrid Nanoparticles. (Elsevier, 2019), pp.283–302

    Chapter  Google Scholar 

  11. M. Arafat, A. Haseeb, S. Akbar, Synthesis of One Dimensional Nanostructures of TiO2 by Thermal Oxidation (Elsevier, 2016)

    Google Scholar 

  12. J.-M. Tulliani, B. Inserra, D. Ziegler, Carbon-based materials for humidity sensing: a short review. Micromachines 10(4), 232 (2019)

    Article  Google Scholar 

  13. A. Tripathy, S. Pramanik, J. Cho, J. Santhosh, N.A.A. Osman, Role of morphological structure, doping, and coating of different materials in the sensing characteristics of humidity sensors. Sensors 14(9), 16343–16422 (2014)

    Article  ADS  Google Scholar 

  14. Z. Ahmad, Q. Zafar, K. Sulaiman, R. Akram, K.S. Karimov, A humidity sensing organic-inorganic composite for environmental monitoring. Sensors 13(3), 3615–3624 (2013)

    Article  ADS  Google Scholar 

  15. D. Zhang, H. Chang, P. Li, R. Liu, Q. Xue, Fabrication and characterization of an ultrasensitive humidity sensor based on metal oxide/graphene hybrid nanocomposite. Sens. Actuators, B Chem. 225, 233–240 (2016)

    Article  Google Scholar 

  16. V.K. Tomer, S. Duhan, R. Malik, S.P. Nehra, S. Devi, A novel highly sensitive humidity sensor based on ZnO/SBA-15 hybrid nanocomposite. J. Am. Ceram. Soc. 98(12), 3719–3725 (2015)

    Article  Google Scholar 

  17. S. Thakur, P. Patil, Rapid synthesis of cerium oxide nanoparticles with superior humidity-sensing performance. Sens. Actuators, B Chem. 194, 260–268 (2014)

    Article  Google Scholar 

  18. Z. Shah, K. Shaheen, T. Arshad, B. Ahmad, S.B. Khan, H. Suo, Al doped Sr and Cd metal oxide nanomaterials for resistive response of humidity sensing. Mater. Chem. Phys. 290, 126632 (2022)

    Article  Google Scholar 

  19. H. Derikvandi, A. Nezamzadeh-Ejhieh, A comprehensive study on electrochemical and photocatalytic activity of SnO2-ZnO/clinoptilolite nanoparticles. J. Mol. Catal. A: Chem. 426, 158–169 (2017)

    Article  Google Scholar 

  20. Z. Wang, Y. Lu, S. Yuan, L. Shi, Y. Zhao, M. Zhang, W. Deng, Hydrothermal synthesis and humidity sensing properties of size-controlled zirconium oxide (ZrO2) nanorods. J. Colloid Interface Sci. 396, 9–15 (2013)

    Article  ADS  Google Scholar 

  21. S. Singh, P. Chaudhary, S. Singh, V. Verma, R. Srivastava, R.K. Tripathi, K. Singh, B. Yadav, Investigation on metal nanoparticles: nickel oxide, cuprous oxide and tin ferrite with their humidity sensing at room temperature. Nano LIFE 12(02), 2250001 (2022)

    Article  Google Scholar 

  22. S.-J. Choi, I.-D. Kim, H.J. Park, 2D layered Mn and Ru oxide nanosheets for real-time breath humidity monitoring. Appl. Surf. Sci. 573, 151481 (2022)

    Article  Google Scholar 

  23. D. Bauskar, B. Kale, P. Patil, Synthesis and humidity sensing properties of ZnSnO3 cubic crystallites. Sens. Actuators B Chem. 161(1), 396–400 (2012)

    Article  Google Scholar 

  24. Y. He, T. Zhang, W. Zheng, R. Wang, X. Liu, Y. Xia, J. Zhao, Humidity sensing properties of BaTiO3 nanofiber prepared via electrospinning. Sens. Actuators, B Chem. 146(1), 98–102 (2010)

    Article  Google Scholar 

  25. Q. Kuang, C. Lao, Z. Wang, Z. Xie, L. Zheng, Zn-doped SnO2 with 3D cubic structure for humidity sensor. Am. Chem. Soc. 129, 6070–6071 (2007)

    Article  Google Scholar 

  26. G.-Y.A. Gy, N. Imanaka, The binary rare earth oxides. Chem. Rev. 98(4), 1479–1514 (1998)

    Article  Google Scholar 

  27. H. Saghrouni, S. Jomni, W. Belgacem, L. Beji, The temperature dependence on the electrical properties of dysprosium oxide deposited on n-porous GaAs. J. Alloy. Compd. 676, 127–134 (2016)

    Article  Google Scholar 

  28. D. Wang, G. He, S. Liang, M. Liu, Annealing-induced evolution in interface stability and electrical performance of sputtering-driven rare-earth-based gate oxides. J. Alloy. Compd. 778, 579–587 (2019)

    Article  Google Scholar 

  29. C.-Y. Chang, T.P.-C. Juan, J.Y.-M. Lee, Fabrication and characterization of metal-ferroelectric (Pb Zr 0.53 Ti 0.47 O 3)-insulator (Dy 2 O 3)-semiconductor capacitors for nonvolatile memory applications. Appl. Phys. Lett. 88(7), 072917 (2006)

    Article  ADS  Google Scholar 

  30. K. Xu, R. Ranjith, A. Laha, H. Parala, A.P. Milanov, R.A. Fischer, E. Bugiel, J.R. Feydt, S. Irsen, T. Toader, Atomic layer deposition of Gd2O3 and Dy2O3: a study of the ALD characteristics and structural and electrical properties. Chem. Mater. 24(4), 651–658 (2012)

    Article  Google Scholar 

  31. H. Hashtroudi, A. Yu, S. Juodkazis, M. Shafiei, Two-dimensional Dy2O3-Pd-PDA/rGO heterojunction nanocomposite: synergistic effects of hybridisation, UV illumination and relative humidity on hydrogen gas sensing. Chemosensors 10(2), 78 (2022)

    Article  Google Scholar 

  32. C.-Y. Guo, Q.-C. Hu, Y.-M. Xu, X.-F. Zhang, S. Gao, H. Zhao, M.-M. Xu, X.-L. Cheng, L.-H. Huo, KCl-modified Dy2O3 nanospheres with humidity response for human respiration monitoring. ACS Appl. Nano Mater. 4(9), 9113–9122 (2021)

    Article  Google Scholar 

  33. M. Baladi, M. Hajizadeh-Oghaz, O. Amiri, M. Valian, M. Salavati-Niasari, Enhanced photocatalytic activity of Sr7Mn7O19. 62-Dy2O3 nanocomposite synthesized via a green method. Int. J. Hydrog. Energy 46(5), 3763–3779 (2021)

    Article  Google Scholar 

  34. A. Jain, A. Sharma, P. Gupta, S. Wadhawan, S. Mehta, Biosynthesis driven dysprosium oxide nanoparticles as a sensor for picric acid. Curr. Res. Green Sustain. Chem. 4, 100080 (2021)

    Article  Google Scholar 

  35. M. Chandrasekhar, D. Sunitha, N. Dhananjaya, H. Nagabhushana, S. Sharma, B. Nagabhushana, C. Shivakumara, R. Chakradhar, Structural and phase dependent thermo and photoluminescent properties of Dy (OH) 3 and Dy2O3 nanorods. Mater. Res. Bull. 47(8), 2085–2094 (2012)

    Article  Google Scholar 

  36. B.M. Abu-Zied, A.M. Asiri, Synthesis of Dy2O3 nanoparticles via hydroxide precipitation: effect of calcination temperature. J. Rare Earths 32(3), 259–264 (2014)

    Article  Google Scholar 

  37. J.-G. Kang, J.S. Gwag, Y. Sohn, Synthesis and characterization of Dy (OH) 3 and Dy2O3 nanorods and nanosheets. Ceram. Int. 41(3), 3999–4006 (2015)

    Article  Google Scholar 

  38. M. Ahmad, M. Rafiq, M. Hasan, Transport characteristics and colossal dielectric response of cadmium sulfide nanoparticles. J. Appl. Phys. 114(13), 133702 (2013)

    Article  ADS  Google Scholar 

  39. A.-W. Xu, Y.-P. Fang, L.-P. You, H.-Q. Liu, A simple method to synthesize Dy (OH) 3 and Dy2O3 nanotubes. J. Am. Chem. Soc. 125(6), 1494–1495 (2003)

    Article  Google Scholar 

  40. K. Akhtar, Y. Javed, F. Muhammad, B. Akhtar, N.A. Shad, M.M. Sajid, Y. Jamil, A. Sharif, W. Abbas, Biotransformation and toxicity evaluation of functionalized manganese doped iron oxide nanoparticles. J. Biomed. Mater. Res. B Appl. Biomater. 109(10), 1563–1577 (2021)

    Article  Google Scholar 

  41. C. Hu, H. Liu, W. Dong, Y. Zhang, G. Bao, C. Lao, Z.L. Wang, La (OH) 3 and La2O3 nanobelts—synthesis and physical properties. Adv. Mater. 19(3), 470–474 (2007)

    Article  Google Scholar 

  42. K. Han, Y. Zhang, T. Cheng, Z. Fang, M. Gao, Z. Xu, X. Yin, Self-assembled synthesis and photoluminescence properties of uniform Dy2O3 microspheres and tripod-like structures. Mater. Chem. Phys. 114(1), 430–433 (2009)

    Article  Google Scholar 

  43. J. Dahlmann, A. Krause, L. Möller, G. Kensah, M. Möwes, A. Diekmann, U. Martin, A. Kirschning, I. Gruh, G. Dräger, Fully defined in situ cross-linkable alginate and hyaluronic acid hydrogels for myocardial tissue engineering. Biomaterials 34(4), 940–951 (2013)

    Article  Google Scholar 

  44. D. Eniu, C. Gruian, E. Vanea, L. Patcas, V. Simon, FTIR and EPR spectroscopic investigation of calcium-silicate glasses with iron and dysprosium. J. Mol. Struct. 1084, 23–27 (2015)

    Article  ADS  Google Scholar 

  45. H.M. Shiri, A. Ehsani, R. Behjatmanesh-Ardakani, Electrochemical deposition and plane-wave periodic DFT study on Dy2O3 nanoparticles and pseudocapacitance performance of Dy2O3/conductive polymer nanocomposite film. J. Taiwan Inst. Chem. Eng. 93, 632–643 (2018)

    Article  Google Scholar 

  46. N.K. Chandar, R. Jayavel, Wet chemical synthesis and characterization of pure and cerium doped Dy2O3 nanoparticles. J. Phys. Chem. Solids 73(9), 1164–1169 (2012)

    Article  ADS  Google Scholar 

  47. K. Gopinath, M. Chinnadurai, N.P. Devi, K. Bhakyaraj, S. Kumaraguru, T. Baranisri, A. Sudha, M. Zeeshan, A. Arumugam, M. Govindarajan, One-pot synthesis of dysprosium oxide nano-sheets: antimicrobial potential and cyotoxicity on A549 lung cancer cells. J. Cluster Sci. 28, 621–635 (2017)

    Article  Google Scholar 

  48. K. Kattel, J.Y. Park, W. Xu, H.G. Kim, E.J. Lee, B.A. Bony, W.C. Heo, S. Jin, J.S. Baeck, Y. Chang, Paramagnetic dysprosium oxide nanoparticles and dysprosium hydroxide nanorods as T2 MRI contrast agents. Biomaterials 33(11), 3254–3261 (2012)

    Article  Google Scholar 

  49. S.B. Yahya, R. Barillé, B. Louati, Synthesis, optical and ionic conductivity studies of a lithium cobalt germanate compound. RSC Adv. 12(11), 6602–6614 (2022)

    Article  ADS  Google Scholar 

  50. C. Suman, K. Prasad, R. Choudhary, Impedance spectroscopic studies of ferroelectric Pb2Sb3DyTi5O18 ceramic. Adv. Appl. Ceram. 104(6), 294–299 (2005)

    Article  ADS  Google Scholar 

  51. A.B.D. Nandiyanto, R. Oktiani, R. Ragadhita, How to read and interpret FTIR spectroscope of organic material. Indones. J. Sci. Technol. 4(1), 97–118 (2019)

    Article  Google Scholar 

  52. M. Ahmad, M. Rafiq, K. Rasool, Z. Imran, M. Hasan, Dielectric and transport properties of bismuth sulfide prepared by solid state reaction method. J. Appl. Phys. 113(4), 043704 (2013)

    Article  ADS  Google Scholar 

  53. A.A. Barzinjy, H.H. Azeez, Green synthesis and characterization of zinc oxide nanoparticles using Eucalyptus globulus Labill. leaf extract and zinc nitrate hexahydrate salt. SN Appl. Sci. 2(5), 991 (2020)

    Article  Google Scholar 

  54. M. Coşkun, Ö. Polat, F.M. Coşkun, Z. Durmuş, M. Çağlar, A. Türüt, The electrical modulus and other dielectric properties by the impedance spectroscopy of LaCrO 3 and LaCr 0.90 Ir 0.10 O 3 perovskites. RSC Adv. 8(9), 4634–4648 (2018)

    Article  ADS  Google Scholar 

  55. Z. Imran, M. Rafiq, M. Ahmad, K. Rasool, S. Batool, M. Hasan, Temperature dependent transport and dielectric properties of cadmium titanate nanofiber mats. AIP Adv. 3(3), 032146 (2013)

    Article  ADS  Google Scholar 

  56. A.B. Javaid, I. Sadiq, H. Shah, M. Idress, S. Saeed, S. Hussain, M. Shahbaz, S.S. Jan, S. Riaz, S. Naseem, Tunable properties of rare earth elements (Ce, Dy, Yb, La and Pr) substituted R-type hexagonal ferrites. J. Mater. Sci. Mater. Electron. 30, 19394–19403 (2019)

    Article  Google Scholar 

  57. I. Khan, S. Khan, W. Khan, Temperature-dependent dielectric and magnetic properties of Mn doped zinc oxide nanoparticles. Mater. Sci. Semicond. Process. 26, 516–526 (2014)

    Article  Google Scholar 

  58. C. Rayssi, S.E. Kossi, J. Dhahri, K. Khirouni, Frequency and temperature-dependence of dielectric permittivity and electric modulus studies of the solid solution Ca 0.85 Er 0.1 Ti 1–x Co 4x/3 O 3 (0≤ x≤ 0.1). Rsc Adv. 8(31), 17139–17150 (2018)

    Article  ADS  Google Scholar 

  59. Y. Li, S. Tjong, Nonlinear current–voltage characteristics in polymer nanocomposites, in Physical Properties and Applications of Polymer Nanocomposites. (Elsevier, 2010), pp.862–890

    Chapter  Google Scholar 

  60. Z. Imran, S. Batool, H. Jamil, M. Usman, M. Israr-Qadir, S. Shah, S. Jamil-Rana, M.A. Rafiq, M. Hasan, M. Willander, Excellent humidity sensing properties of cadmium titanate nanofibers. Ceram. Int. 39(1), 457–462 (2013)

    Article  Google Scholar 

  61. H. Jamil, S.S. Batool, Z. Imran, M. Usman, M. Rafiq, M. Willander, M. Hassan, Electrospun titanium dioxide nanofiber humidity sensors with high sensitivity. Ceram. Int. 38(3), 2437–2441 (2012)

    Article  Google Scholar 

  62. X. Fu, C. Wang, H. Yu, Y. Wang, T. Wang, Fast humidity sensors based on CeO2 nanowires. Nanotechnology 18(14), 145503 (2007)

    Article  ADS  Google Scholar 

  63. Z. Wang, L. Shi, F. Wu, S. Yuan, Y. Zhao, M. Zhang, The sol–gel template synthesis of porous TiO2 for a high performance humidity sensor. Nanotechnology 22(27), 275502 (2011)

    Article  ADS  Google Scholar 

  64. L. Xu, R. Wang, Q. Xiao, D. Zhang, Y. Liu, Micro humidity sensor with high sensitivity and quick response/recovery based on ZnO/TiO2 composite nanofibers. Chin. Phys. Lett. 28(7), 070702 (2011)

    Article  ADS  Google Scholar 

  65. W. Xie, M. Yang, Y. Cheng, D. Li, Y. Zhang, Z. Zhuang, Optical fiber relative-humidity sensor with evaporated dielectric coatings on fiber end-face. Opt. Fiber Technol. 20(4), 314–319 (2014)

    Article  ADS  Google Scholar 

  66. X. Peng, J. Chu, B. Yang, P.X. Feng, Mn-doped zinc oxide nanopowders for humidity sensors. Sens. Actuators, B Chem. 174, 258–262 (2012)

    Article  Google Scholar 

  67. X.-J. Yue, T.-S. Hong, X. Xu, Z. Li, High-performance humidity sensors based on double-layer ZnO-TiO2 nanofibers via electrospinning. Chin. Phys. Lett. 28(9), 090701 (2011)

    Article  ADS  Google Scholar 

  68. A.D. Smith, K. Elgammal, F. Niklaus, A. Delin, A.C. Fischer, S. Vaziri, F. Forsberg, M. Råsander, H. Hugosson, L. Bergqvist, Resistive graphene humidity sensors with rapid and direct electrical readout. Nanoscale 7(45), 19099–19109 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Ms. Effat Yasin would like to acknowledge the Higher Education Commission Pakistan for providing funding under the Faculty Development Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasir Javed.

Ethics declarations

Conflict of interest

Authors have no conflict to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 58 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yasin, E., Javed, Y., Imran, Z. et al. Exploration of dielectric and humidity sensing properties of dysprosium oxide nanorods. Eur. Phys. J. Plus 138, 1050 (2023). https://doi.org/10.1140/epjp/s13360-023-04693-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04693-9

Navigation