Skip to main content
Log in

Modulating vibrational resonance and Hamiltonian energy in Izhikevich neuron through autaptic regulation

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In our study, we examined the effects of autaptic regulation on neuronal activity and function. Specifically, we explored how both electrical and chemical autaptic currents impact vibration resonance and Hamiltonian energy using the Izhikevich neuron model. Our main findings include the discovery that the electrical autaptic coupling strengths in the electrical autaptic current significantly influences the neuron’s response to low-frequency signals. We identified an optimal autaptic coupling strength that induces neuronal vibration resonance through autaptic current modulation. Additionally, we observed that increasing the strength of excitatory-type chemical autaptic current led to an enhanced inhibition of vibration resonance. Simultaneously regulating both types of autaptic currents revealed a range of electrical and chemical autaptic current intensities that produced favorable vibration resonance, ultimately improving the system’s response to low-frequency signals. Moreover, our study emphasized the significant impact of autaptic currents on neuronal discharge modes and their corresponding variations in Hamiltonian energy. In summary, our research underscores the importance of autaptic regulation in modulating neuronal responses and provides insights into optimizing autaptic feedback gain for resonance induction, as well as its effects on Hamiltonian energy and neuronal dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: Data will be made available on reasonable request].

References

  1. S.G. Hormuzdi, M.A. Filippov, G. Mitropoulou, H. Monyer, R. Bruzzone, B.B.A. Biomembr. 1662, 113 (2004)

    Article  Google Scholar 

  2. R. Larsen, I. Smith, J. Miriyala, J.E. Han, R.J. Corlew, S.L. Smith, D. Philpot, Neuron 83, 879 (2014)

    Article  Google Scholar 

  3. K. Usha, P.A. Subha, Nonlinear Dyn. 96, 2115 (2019)

    Article  Google Scholar 

  4. C.S. Herrmann, A. Klaus, Int. J. Bifurcat. Chaos 14, 623 (2004)

    Article  Google Scholar 

  5. E. Yilmaz, M. Ozer, V. Baysal, M. Perc, Sci. Rep. 6, 30914 (2016)

    Article  ADS  Google Scholar 

  6. X.L. Yang, Y.H. Yu, Z.K. Sun, Chaos 27, 083117 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  7. M.Y. Ge, Y. Jia, Y. Xu, L.L. Lu, H.W. Wang, Y. Zhao, Appl. Math. Comput. 352, 136 (2019)

    MathSciNet  Google Scholar 

  8. S. Rajasekar, K. Abirami, M.A.F. Sanjuan, Chaos 21, 033106 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  9. W.R. Softky, C. Koch, Neurosci. 13, 334 (1993)

    Article  Google Scholar 

  10. M. Perc, Phys. Rev. E 76, 66203 (2007)

    Article  ADS  Google Scholar 

  11. M.E. Yamakou, J. Jost, Phys. Rev. E 100, 022313 (2019)

    Article  ADS  Google Scholar 

  12. V. Baysal, E. Yilmaz, Phys. A 537, 122733 (2019)

    Article  Google Scholar 

  13. L.J. Yang, W.H. Liu, M. Yi, C.J. Wang, Q.M. Zhu, X. Zhan, Y. Jia, Phys. Rev. E 86, 016209 (2012)

    Article  ADS  Google Scholar 

  14. B. Deng, J. Wang, X. Wei, K.M. Tang, W.L. Chan, Chaos 20, 013113 (2010)

    Article  ADS  Google Scholar 

  15. T.O. Roy-Layinde, J.A. Laoye, O.O. Popoola, U.E. Vincent, Chaos 26, 433 (2016)

    Article  Google Scholar 

  16. E.M. Izhikevich, IEEE T. Neural Networ. 14, 1569 (2003)

    Article  Google Scholar 

  17. S. Nobukawa, H. Nishimura, T. Yamanishi, J.Q. Liu, G. Cymbalyuk, PLoS ONE 10, e0138919 (2015)

    Article  Google Scholar 

  18. Y. Çakir, Turk. J. Electr. Eng. Co. 25, 2595 (2017)

    Google Scholar 

  19. S. Nobukawa, H. Nishimura, T. Yamanishi, Sci. Rep. 7, 1331 (2017)

    Article  ADS  Google Scholar 

  20. S.D. Vijay, S.L. Kingston, K. Thamilmaran, A.E.U. Int, J. Electron Commun. 111, 152898 (2019)

    Google Scholar 

  21. Y. Yang, J. Ma, Y. Xu, Y. Jia, Cogn. Neurodyn. 15, 265 (2021)

    Article  Google Scholar 

  22. D.H. Kobe, Am. J. Phys. 54, 552 (1998)

    Article  ADS  Google Scholar 

  23. R. Li, E. Dong, J. Tong et al., Chaos 32, 013127 (2022)

    Article  ADS  Google Scholar 

  24. M.W. Winkler, K. Freese, Phys. Rev. D 103, 043511 (2021)

    Article  ADS  Google Scholar 

  25. M.Y. Ge, L.L. Lu, R. Mamatimin, Y. Jia, Chaos Soliton Frac. 133, 109645 (2020)

    Article  Google Scholar 

  26. X.J. Sun, Z.F. Liu, Nonlin. Dyn. 92, 1707 (2018)

    Article  Google Scholar 

  27. S.A. Faghidian, K.K. Żur, E. Pan, Int. J. Eng. Sci. 182, 103786 (2023)

    Article  Google Scholar 

  28. T.A. Faghidian, K.K. Żur, I. Elishakoff, Commun. Noninear Sci. 117, 106928 (2023)

    Article  Google Scholar 

  29. Y. Oyamada, D. Ballantyne, K. Mückenhoff, P. Scheid, J. Physiol. 513, 381 (2010)

    Article  Google Scholar 

  30. Y. Xie, Y. Xu, J. Ma, Nonlin. Dyn. 111, 11521 (2023)

    Article  Google Scholar 

  31. F.F. Yang, Y. Wang, J. Ma, Commun. Nonlin. Sci. 19, 107127 (2023)

    Article  Google Scholar 

  32. L. Zeng, J. Li, Fluct. Noise Lett. 10, 223 (2011)

    Article  Google Scholar 

  33. M.S. Kafraj, F. Parastesh, S. Jafari, Chaos Soliton Frac. 137, 109782 (2020)

    Article  Google Scholar 

  34. S.A. Faghidian, D. Goudar, G.H. Farrahi, D.J. Smith, J. Strain Anal. Eng. 47, 254 (2012)

    Article  Google Scholar 

  35. S.A. Faghidian, J. Press. Vessel. Technol. 139, 041202 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China under Grant No. 12205154 and Fundamental Research Funds for the Central Universities under Grant No. KYQN2023017. National Natural Science Foundation of China under Grant No. ZX2200468 and Fundamental Research Funds for the Central Universities under Grant No. KYQN2023016; Natural Science Foundation of Jiangsu Province (Grant No. BK20200550).

Author information

Authors and Affiliations

Authors

Contributions

We declare that all the authors have same contributions to this paper.

Corresponding author

Correspondence to Yao Chen.

Ethics declarations

Conflict of interest

The author reports there are no competing interests to declare.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, M., Wang, H. & Chen, Y. Modulating vibrational resonance and Hamiltonian energy in Izhikevich neuron through autaptic regulation. Eur. Phys. J. Plus 138, 1047 (2023). https://doi.org/10.1140/epjp/s13360-023-04684-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04684-w

Navigation