Skip to main content
Log in

Solitary travelling wave profiles to the nonlinear generalized Calogero–Bogoyavlenskii–Schiff equation and dynamical assessment

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This study focuses on the nonlinear generalized Calogero–Bogoyavlenskii–Schiff equation to explain the wave profiles in soliton theory. The improved and efficient technique is applied to derive soliton solutions that are dependent, significant, and more broadly applicable for this equation, surpassing the intricacy of prior complex travel equations. The generalized projective Riccati equations method is employed to acquire precise travelling wave solutions, encompassing various types such as U-shaped, bright, bell-shaped, dark, and flat kink-type wave peakon solutions. These soliton solutions are represented using trigonometric and hyperbolic functions. The graphical presentation of the travelling wave pattern solutions of the model is achieved through the use of the Wolfram Mathematica software for the visualization of the impact of the involved parameters. 3D, contour, and 2D surfaces depict the propagating behaviours of the obtained solutions. Sensitivity analysis is conducted to observe the dynamics of the model, particularly the wave velocity parameter controls the water waves. Furthermore, quasi-periodic chaotic, quasi-periodic, and periodic systems are investigated to understand the model’s dynamics further. The analysis demonstrates the reliability and efficiency of the employed technique, making it applicable for finding suitable solitary travelling wave solutions for a wide range of nonlinear evolution equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability statement

No data sets were collected or analysed during this study; there is no applicable data sharing for this paper.

References

  1. Y.M. Li, H.M. Baskonus, A.M. Khudhur, Investigations of the complex wave patterns to the generalized Calogero–Bogoyavlenskii–Schiff equation. Soft Comput. 25(10), 6999–7008 (2021)

    Article  MATH  Google Scholar 

  2. H. Ma, Q. Cheng, A. Deng, Solitons, breathers, and lump solutions to the (2+ 1)-dimensional generalized Calogero–Bogoyavlenskii–Schiff equation. Complexity 2021, 1–10 (2021)

    Article  ADS  Google Scholar 

  3. K. Toda, S.J. Yu, The investigation into the Schwarz–Korteweg–de Vries equation and the Schwarz derivative in (2+ 1) dimensions. J. Math. Phys. 41(7), 4747–4751 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. S.T. Chen, W.X. Ma, Lump solutions of a generalized Calogero–Bogoyavlenskii–Schiff equation. Comput. Math. Appl. 76(7), 1680–1685 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. A.M. Wazwaz, The Cole–Hopf transformation and multiple soliton solutions for the integrable sixth-order Drinfeld–Sokolov–Satsuma–Hirota equation. Appl. Math. Comput. 207(1), 248–255 (2009)

    MathSciNet  MATH  Google Scholar 

  6. M.I. Asjad, S.Z. Majid, W.A. Faridi, S.M. Eldin, Sensitive analysis of soliton solutions of nonlinear Landau–Ginzburg–Higgs equation with generalized projective Riccati method. AIMS Math. 8(5), 10210–10227 (2023)

    Article  MathSciNet  Google Scholar 

  7. S. Chen, L. Bu, C. Pan, C. Hou, F. Baronio, P. Grelu, N. Akhmediev, Modulation instability-rogue wave correspondence hidden in integrable systems. Commun. Phys. 5(1), 297 (2022)

    Article  Google Scholar 

  8. S.Z. Majid, W.A. Faridi, M.I. Asjad, A. El-Rahman, S.M. Eldin, Explicit soliton structure formation for the Riemann wave equation and a sensitive demonstration. Fractal Fract. 7(2), 102 (2023)

    Article  Google Scholar 

  9. C. Pan, L. Bu, S. Chen, W.X. Yang, D. Mihalache, P. Grelu, F. Baronio, General rogue wave solutions under SU (2) transformation in the vector Chen–Lee–Liu nonlinear Schrödinger equation. Phys. D Nonlinear Phenom. 434, 133204 (2022)

    Article  MATH  Google Scholar 

  10. Y. He, A. Slunyaev, N. Mori, A. Chabchoub, Experimental evidence of nonlinear focusing in standing water waves. Phys. Rev. Lett. 129(14), 144502 (2022)

    Article  ADS  Google Scholar 

  11. L. Bu, F. Baronio, S. Chen, S. Trillo, Quadratic Peregrine solitons resonantly radiating without higher-order dispersion. Opt. Lett. 47(10), 2370–2373 (2022)

    Article  ADS  Google Scholar 

  12. Z. Li, X. Xie, C. Jin, Phase portraits and optical soliton solutions of coupled nonlinear Maccari systems describing the motion of solitary waves in fluid flow. Results Phys. 41, 105932 (2022)

    Article  Google Scholar 

  13. Y. Shen, B. Tian, X.T. Gao, Bilinear auto-Bäcklund transformation, soliton and periodic-wave solutions for a (2+ 1)-dimensional generalized Kadomtsev–Petviashvili system in fluid mechanics and plasma physics. Chin. J. Phys. 77, 2698–2706 (2022)

    Article  Google Scholar 

  14. K.K. Ali, C. Cattani, J.F. Gómez-Aguilar, D. Baleanu, M.S. Osman, Analytical and numerical study of the DNA dynamics arising in oscillator-chain of Peyrard–Bishop model. Chaos Solitons Fractals 139, 110089 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. M.S. Aktar, M.A. Akbar, M.S. Osman, Spatio-temporal dynamic solitary wave solutions and diffusion effects to the nonlinear diffusive predator-prey system and the diffusion-reaction equations. Chaos Solitons Fractals 160, 112212 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  16. O.A. Bruzzone, D.V. Perri, M.H. Easdale, Vegetation responses to variations in climate: a combined ordinary differential equation and sequential Monte Carlo estimation approach. Ecol. Inf. 73, 101913 (2022)

    Article  Google Scholar 

  17. T.Y. Zhou, B. Tian, C.R. Zhang, S.H. Liu, Auto-Bäcklund transformations, bilinear forms, multiple-soliton, quasi-soliton and hybrid solutions of a (3+ 1)-dimensional modified Korteweg–de Vries–Zakharov–Kuznetsov equation in an electron-positron plasma. Eur. Phys. J. Plus 137(8), 1–17 (2022)

    Article  ADS  Google Scholar 

  18. M. Alabedalhadi, Exact travelling wave solutions for nonlinear system of spatiotemporal fractional quantum mechanics equations. Alex. Eng. J. 61(2), 1033–1044 (2022)

    Article  Google Scholar 

  19. L. Akinyemi, H. Rezazadeh, S.W. Yao, M.A. Akbar, M.M. Khater, A. Jhangeer, H. Ahmad, Nonlinear dispersion in parabolic law medium and its optical solitons. Results Phys. 26, 104411 (2021)

    Article  Google Scholar 

  20. L. Akinyemi, M. Şenol, H. Rezazadeh, H. Ahmad, H. Wang, Abundant optical soliton solutions for an integrable (2+ 1)-dimensional nonlinear conformable Schrödinger system. Results Phys. 25, 104177 (2021)

    Article  Google Scholar 

  21. C. Pan, L. Bu, S. Chen, W.X. Yang, D. Mihalache, P. Grelu, F. Baronio, General rogue wave solutions under SU (2) transformation in the vector Chen–Lee–Liu nonlinear Schrödinger equation. Phys. D Nonlinear Phenom. 434, 133204 (2022)

    Article  MATH  Google Scholar 

  22. L. Guo, A. Chabchoub, J. He, Higher-order rogue wave solutions to the Kadomtsev–Petviashvili 1 equation. Phys. D Nonlinear Phenom. 426, 132990 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  23. S. Kumar, S.K. Dhiman, D. Baleanu, M.S. Osman, A.M. Wazwaz, Lie symmetries, closed-form solutions and various dynamical profiles of solitons for the variable coefficient (2+ 1)-dimensional KP equations. Symmetry 14(3), 597 (2022)

    Article  ADS  Google Scholar 

  24. S. Kumar, S.K. Dhiman, D. Baleanu, M.S. Osman, A.M. Wazwaz, Lie symmetries, closed-form solutions and various dynamical profiles of solitons for the variable coefficient (2+ 1)-dimensional KP equations. Symmetry 14(3), 597 (2022)

    Article  ADS  Google Scholar 

  25. E.M. Zayed, K.A. Gepreel, R.M. Shohib, M.E. Alngar, Y. Yıldırım, Optical solitons for the perturbed Biswas–Milovic equation with Kudryashov’s law of refractive index by the unified auxiliary equation method. Optik 230, 166286 (2021)

    Article  ADS  Google Scholar 

  26. K.K. Ali, A.M. Wazwaz, M.S. Osman, Optical soliton solutions to the generalized nonautonomous nonlinear Schrödinger equations in optical fibers via the Sine–Gordon expansion method. Optik 208, 164132 (2020)

    Article  ADS  Google Scholar 

  27. M. Khater, A. Jhangeer, H. Rezazadeh, L. Akinyemi, M.A. Akbar, M. Inc, H. Ahmad, New kinds of analytical solitary wave solutions for ionic currents on microtubules equation via two different techniques. Opt. Quantum Electron. 53(11), 1–27 (2021)

    Article  Google Scholar 

  28. R. Zhang, S. Bilige, T. Chaolu, Fractal solitons, arbitrary function solutions, exact periodic wave and breathers for a nonlinear partial differential equation by using bilinear neural network method. J. Syst. Sci. Complex. 34(1), 122–139 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  29. A. Zafar, M. Shakeel, A. Ali, L. Akinyemi, H. Rezazadeh, Optical solitons of nonlinear complex Ginzburg–Landau equation via two modified expansion schemes. Opt. Quantum Electron. 54, 1–15 (2022)

    Article  Google Scholar 

  30. B. Karaman, The use of improved-F expansion method for the time-fractional Benjamin–Ono equation. Revis. Real Acad. Cienc. Exactas Fıs. Nat. Ser. A Mat. 115(3), 128 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  31. S.F. Tian, M.J. Xu, T.T. Zhang, A symmetry-preserving difference scheme and analytical solutions of a generalized higher-order beam equation. Proc. R. Soc. A 477(2255), 20210455 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  32. F.S. Khodadad, S.M. Mirhosseini-Alizamini, B. Günay, L. Akinyemi, H. Rezazadeh, M. Inc, Abundant optical solitons to the Sasa–Satsuma higher-order nonlinear Schrödinger equation. Opt. Quantum Electron. 53(12), 702 (2021)

    Article  Google Scholar 

  33. K.K. Ali, A. Yokus, A.R. Seadawy, R. Yilmazer, The ion sound and Langmuir waves dynamical system via computational modified generalized exponential rational function. Chaos Solitons Fractals 161, 112381 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  34. T. Abdulkadir Sulaiman, A. Yusuf, Dynamics of lump-periodic and breather waves solutions with variable coefficients in liquid with gas bubbles. Waves Random Complex Media 33(4), 1–14 (2021)

    MathSciNet  Google Scholar 

  35. N. Raza, Z. Hassan, J.F. Gómez-Aguilar, Extraction of new super–Gaussian solitons via collective variables. Opti. Quantum Electron. 53, 1–15 (2021)

    Google Scholar 

  36. S. Arshed, N. Raza, M. Alansari, Soliton solutions of the generalized Davey–Stewartson equation with full nonlinearities via three integrating schemes. Ain Shams Eng. J. 12(3), 3091–3098 (2021)

    Article  Google Scholar 

  37. M.I. Asjad, W.A. Faridi, S.E. Alhazmi, A. Hussanan, The modulation instability analysis and generalized fractional propagating patterns of the Peyrard–Bishop DNA dynamical equation. Opt. Quantum Electron. 55(3), 232 (2023)

    Article  Google Scholar 

  38. G. Akram, M. Sadaf, M.A.U. Khan, Soliton solutions of the resonant nonlinear Schrodinger equation using modified auxiliary equation method with three different nonlinearities. Math. Comput. Simul. 206, 1–20 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  39. X. Li, P.J. Wong, gL 1 scheme for solving a class of generalized time-fractional diffusion equations. Mathematics 10(8), 1219 (2022)

    Article  Google Scholar 

  40. Q. Ding, P.J. Wong, A higher order numerical scheme for solving fractional Bagley–Torvik equation. Math. Methods Appl. Sci. 45(3), 1241–1258 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  41. S. Abbagari, A. Houwe, L. Akinyemi, Y. Saliou, T.B. Bouetou, Modulation instability gain and discrete soliton interaction in gyrotropic molecular chain. Chaos Solitons Fractals 160, 112255 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  42. M.M. Liu, M-lump solutions to the (2+1)-dimensional generalized Calogero–Bogoyavlenshii–Schiff equation. Math. Comput. Simul. 206, 118–129 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  43. A.A. Gaber, A.M. Wazwaz, Symmetries and dynamic wave solutions for (3+1)-dimensional potential Calogero–Bogoyavlenskii–Schiff equation. J. Ocean Eng. Sci. (2022). https://doi.org/10.1016/j.joes.2022.05.018

    Article  Google Scholar 

  44. S. Singh, S.S. Ray, Painlevé integrability and analytical solutions of variable coefficients negative order KdV–Calogero–Bogoyavlenskii–Schiff equation using Auto–Bäcklund transformation. Opt. Quantum Electron. 55(2), 195 (2023)

    Article  Google Scholar 

  45. S.H. Liu, B. Tian, Q.X. Qu, C.R. Zhang, C.C. Hu, M. Wang, Lump, mixed lump-stripe, mixed rogue wave-stripe and breather wave solutions for a (3+ 1)-dimensional generalized Calogero–Bogoyavlenskii–Schiff equation. Modern Phys. Lett. B 34(23), 2050243 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  46. A.M. Elsherbeny, M. Mirzazadeh, A. Akbulut, A.H. Arnous, Optical solitons of the perturbation Fokas–Lenells equation by two different integration procedures. Optik 273, 170382 (2023)

    Article  ADS  Google Scholar 

  47. E.M. Zayed, K.A. Alurrfi, The generalized projective Riccati equations method and its applications for solving two nonlinear PDEs describing microtubules. Int. J. Phys. Sci 10, 391–402 (2015)

    Article  Google Scholar 

  48. T.X. Zhang, H.N. Xuan, D.F. Zhang, C.J. Wang, Non-travelling wave solutions to a (3+ 1)-dimensional potential-YTSF equation and a simplified model for reacting mixtures. Chaos Solitons Fractals 34(3), 1006–1013 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. M. Lakshmanan, S. Rajaseekar, Nonlinear Dynamics: Integrability, Chaos and Patterns (Springer, Cham, 2012)

    Google Scholar 

Download references

Funding

No funding was available for this research.

Author information

Authors and Affiliations

Authors

Contributions

SZM and MIA contributed to the problem formulation and formal analysis. MIA and WAF were involved in the investigation and methodology. SZM and MIA provided supervision and resources. MIA and WAF conducted the validation, software development, and graphical discussions. SZM and MIA also contributed to the editing and review of the manuscript. All authors participated in editing and reviewing the manuscript and have approved the final version for submission.

Corresponding author

Correspondence to Sheikh Zain Majid.

Ethics declarations

Conflict of interest

The authors confirm that they do not have any competing interests.

Consent to participate and ethical approval

Not applicable.

Consent for publication

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majid, S.Z., Asjad, M.I. & Faridi, W.A. Solitary travelling wave profiles to the nonlinear generalized Calogero–Bogoyavlenskii–Schiff equation and dynamical assessment. Eur. Phys. J. Plus 138, 1040 (2023). https://doi.org/10.1140/epjp/s13360-023-04681-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04681-z

Navigation