Skip to main content
Log in

Investigating of the pure-cubic optical solitons in the presence of spatio-temporal and inter-modal dispersions

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this manuscript, we studied the pure-cubic optical solitons with spatio-temporal and inter-modal dispersion in the absence of chromatic dispersion. To produce the analytical solution of the presented model, we implemented two algorithms, namely, the Kudryashov auxiliary equation method and the new Kudryashov method. These two methods are based on the homogeneous balance constant. We acquired the dark, bright and singular solitons with choosing the appropriate parameter values. The three-dimensional, contour and two-dimensional portraits of some of the obtained solutions were illustrated. Moreover, we investigated the effects of the coefficients of the model parameters on the soliton view with graphical representations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no data sets were generated or analyzed during the current study.

References

  1. L. Debnath, L. Debnath, Nonlinear Partial Differential Equations for Scientists and Engineers (Springer, 2005)

    Book  MATH  Google Scholar 

  2. V.A. Galaktionov, S.R. Svirshchevskii, Exact Solutions and Invariant Subspaces of Nonlinear Partial Differential Equations in Mechanics and Physics (CRC Press, 2006)

    Book  MATH  Google Scholar 

  3. J.D. Logan, An Introduction to Nonlinear Partial Differential Equations, vol. 89 (Wiley, 2008)

    MATH  Google Scholar 

  4. M. Mirzazadeh, M. Ekici, A. Sonmezoglu, M. Eslami, Q. Zhou, A.H. Kara, D. Milovic, F.B. Majid, A. Biswas, M. Belić, Optical solitons with complex Ginzburg–Landau equation. Nonlinear Dyn. 85, 1979–2016 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. A.H. Arnous, A. Biswas, Y. Yıldırım, Q. Zhou, W. Liu, A.S. Alshomrani, H.M. Alshehri, Cubic-quartic optical soliton perturbation with complex Ginzburg–Landau equation by the enhanced Kudryashov’s method. Chaos Solitons Fractals 155, 111748 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  6. A.M. Yalçı, M. Ekici, Stationary optical solitons with complex Ginzburg–Landau equation having nonlinear chromatic dispersion. Opt. Quant. Electron. 54(3), 167 (2022)

    Article  Google Scholar 

  7. N.A. Kudryashov, General solution of traveling wave reduction for the Kundu–Mukherjee–Naskar model. Optik 186, 22–27 (2019)

    Article  ADS  Google Scholar 

  8. Y. Yıldırım, M. Mirzazadeh, Optical pulses with Kundu–Mukherjee–Naskar model in fiber communication systems. Chin. J. Phys. 64, 183–193 (2020)

    Article  MathSciNet  Google Scholar 

  9. K.-J. Wang, J. Si, J.-H. Liu, Diverse optical soliton solutions to the Kundu–Mukherjee–Naskar equation via two novel techniques. Optik 273, 170403 (2023)

    Article  ADS  Google Scholar 

  10. N. Kadkhoda, H. Jafari, Analytical solutions of the Gerdjikov–Ivanov equation by using exp (- \(\varphi \) (\(\xi \)))-expansion method. Optik 139, 72–76 (2017)

    Article  ADS  Google Scholar 

  11. B. He, Q. Meng, Bifurcations and new exact travelling wave solutions for the Gerdjikov–Ivanov equation. Commun. Nonlinear Sci. Numer. Simul. 15(7), 1783–1790 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. S. Khuri, New optical solitons and traveling wave solutions for the Gerdjikov–Ivanov equation. Optik 268, 169784 (2022)

    Article  ADS  Google Scholar 

  13. H. Chen, Y. Lee, C. Liu, Integrability of nonlinear Hamiltonian systems by inverse scattering method. Phys. Scr. 20(3–4), 490 (1979)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. A. Mohammed, H. Bakodah, M. Banaja, A. Alshaery, Q. Zhou, A. Biswas, S.P. Moshokoa, M.R. Belic, Bright optical solitons of Chen–Lee–Liu equation with improved Adomian decomposition method. Optik 181, 964–970 (2019)

    Article  ADS  Google Scholar 

  15. H. Triki, Q. Zhou, S.P. Moshokoa, M.Z. Ullah, A. Biswas, M. Belic, Chirped w-shaped optical solitons of Chen–Lee–Liu equation. Optik 155, 208–212 (2018)

    Article  ADS  Google Scholar 

  16. J. Manafian, On the complex structures of the Biswas–Milovic equation for power, parabolic and dual parabolic law nonlinearities. Eur. Phys. J. Plus 130(12), 255 (2015)

    Article  Google Scholar 

  17. N. Raza, M. Abdullah, A.R. Butt, Analytical soliton solutions of Biswas–Milovic equation in Kerr and non-Kerr law media. Optik 157, 993–1002 (2018)

    Article  ADS  Google Scholar 

  18. S.T.R. Rizvi, K. Ali, M. Ahmad, Optical solitons for Biswas–Milovic equation by new extended auxiliary equation method. Optik 204, 164181 (2020)

    Article  ADS  Google Scholar 

  19. C.-C. Ding, Q. Zhou, H. Triki, Z.-H. Hu, Interaction dynamics of optical dark bound solitons for a defocusing Lakshmanan–Porsezian–Daniel equation. Opt. Express 30(22), 40712–40727 (2022)

    Article  ADS  Google Scholar 

  20. C. Peng, Z. Li, H. Zhao, New exact solutions to the Lakshmanan–Porsezian–Daniel equation with Kerr law of nonlinearity. Math. Probl. Eng. 2022 (2022)

  21. N.A. Kudryashov, The Lakshmanan–Porsezian-Daniel model with arbitrary refractive index and its solution. Optik 241, 167043 (2021)

    Article  ADS  Google Scholar 

  22. Q. Zhang, Y. Zhang, R. Ye, Exact solutions of nonlocal Fokas–Lenells equation. Appl. Math. Lett. 98, 336–343 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. S. Arshed, N. Raza, Optical solitons perturbation of Fokas–Lenells equation with full nonlinearity and dual dispersion. Chin. J. Phys. 63, 314–324 (2020)

    Article  MathSciNet  Google Scholar 

  24. K. Hosseini, M. Mirzazadeh, J. Vahidi, R. Asghari, Optical wave structures to the Fokas–Lenells equation. Optik 207, 164450 (2020)

    Article  ADS  Google Scholar 

  25. F. Sun, Optical solutions of Sasa–Satsuma equation in optical fibers. Optik 228, 166127 (2021)

    Article  ADS  Google Scholar 

  26. A.-M. Wazwaz, M. Mehanna, Higher-order Sasa–Satsuma equation: bright and dark optical solitons. Optik 243, 167421 (2021)

    Article  ADS  Google Scholar 

  27. C. Gilson, J. Hietarinta, J. Nimmo, Y. Ohta, Sasa–Satsuma higher-order nonlinear Schrödinger equation and its bilinearization and multisoliton solutions. Phys. Rev. E 68(1), 016614 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  28. M. Wang, X. Li, J. Zhang, The (G\(^{\prime }\)G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics. Phys. Lett. A 372(4), 417–423 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. E. Zayed, K.A. Gepreel, The (G\(^{\prime }/\)G)-expansion method for finding traveling wave solutions of nonlinear partial differential equations in mathematical physics. J. Math. Phys. 50(1), 013502 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  30. M.A. Akbar, N.H.M. Ali, An ansatz for solving nonlinear partial differential equations in mathematical physics. Springerplus 5(1), 24 (2016)

    Article  MathSciNet  Google Scholar 

  31. K. Khan, M.A. Akbar, Exact and solitary wave solutions for the Tzitzeica–Dodd–Bullough and the modified KdV–Zakharov–Kuznetsov equations using the modified simple equation method. Ain Shams Eng. J. 4(4), 903–909 (2013)

    Article  Google Scholar 

  32. A.J.M. Jawad, M.D. Petković, A. Biswas, Modified simple equation method for nonlinear evolution equations. Appl. Math. Comput. 217(2), 869–877 (2010)

    MathSciNet  MATH  Google Scholar 

  33. M.O. Al-Amr, Exact solutions of the generalized \((2+1)\)-dimensional nonlinear evolution equations via the modified simple equation method. Comput. Math. Appl. 69(5), 390–397 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. M. Wang, Y. Zhou, Z. Li, Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics. Phys. Lett. A 216(1–5), 67–75 (1996)

    Article  ADS  MATH  Google Scholar 

  35. E. Fan, H. Zhang, A note on the homogeneous balance method. Phys. Lett. A 246(5), 403–406 (1998)

    Article  ADS  MATH  Google Scholar 

  36. B. Radha, C. Duraisamy, The homogeneous balance method and its applications for finding the exact solutions for nonlinear equations. J. Amb. Intell. Hum. Comput. 12, 6591–6597 (2021)

    Article  Google Scholar 

  37. Y. Chen, B. Li, General projective Riccati equation method and exact solutions for generalized KdV-type and KdV–Burgers-type equations with nonlinear terms of any order. Chaos Solitons Fractals 19(4), 977–984 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. E. Zayed, K. Alurrfi, The generalized projective Riccati equations method for solving nonlinear evolution equations in mathematical physics. Abstr. Appl. Anal. 2014 (2014)

  39. N. Ozdemir, Optical solitons for Radhakrishnan–Kundu–Lakshmanan equation in the presence of perturbation term and having Kerr law. Optik 271, 170127 (2022)

    Article  ADS  Google Scholar 

  40. J. Liu, K. Yang, The extended F-expansion method and exact solutions of nonlinear PDEs. Chaos Solitons Fractals 22(1), 111–121 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. M. Abdou, The extended F-expansion method and its application for a class of nonlinear evolution equations. Chaos Solitons Fractals 31(1), 95–104 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. W.B. Rabie, H.M. Ahmed, Construction cubic-quartic solitons in optical metamaterials for the perturbed twin-core couplers with Kudryashov’s sextic power law using extended f-expansion method. Chaos Solitons Fractals 160, 112289 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  43. I. Onder, A. Secer, M. Ozisik, M. Bayram, Obtaining optical soliton solutions of the cubic-quartic Fokas–Lenells equation via three different analytical methods. Opt. Quant. Electron. 54(12), 786 (2022)

    Article  Google Scholar 

  44. P. Albayrak, Soliton solutions of (2+ 1)-dimensional non-linear reaction–diffusion model via Riccati–Bernoulli approach. Therm. Sci. 26(Spec. issue 2), 811–821 (2022)

    Article  Google Scholar 

  45. S.E. Das, Retrieval of soliton solutions of (1+ 1)-dimensional non-linear telegraph equation. Therm. Sci. 26(Spec. issue 2), 801–810 (2022)

    Article  Google Scholar 

  46. A. Blanco-Redondo, C.M. De Sterke, J.E. Sipe, T.F. Krauss, B.J. Eggleton, C. Husko, Pure-quartic solitons. Nat. Commun. 7(1), 10427 (2016)

    Article  ADS  Google Scholar 

  47. O. González-Gaxiola, A. Biswas, F. Mallawi, M.R. Belic, Cubic-quartic bright optical solitons with improved Adomian decomposition method. J. Adv. Res. 21, 161–167 (2020)

    Article  Google Scholar 

  48. A. Biswas, S. Arshed, Application of semi-inverse variational principle to cubic-quartic optical solitons with Kerr and power law nonlinearity. Optik 172, 847–850 (2018)

    Article  ADS  Google Scholar 

  49. A. Biswas, H. Triki, Q. Zhou, S.P. Moshokoa, M.Z. Ullah, M. Belic, Cubic-quartic optical solitons in Kerr and power law media. Optik 144, 357–362 (2017)

    Article  ADS  Google Scholar 

  50. A. Goyal, R. Gupta, C. Kumar, T.S. Raju et al., Chirped femtosecond solitons and double-kink solitons in the cubic-quintic nonlinear Schrödinger equation with self-steepening and self-frequency shift. Phys. Rev. A 84(6), 063830 (2011)

    Article  ADS  Google Scholar 

  51. N. Nasreen, A.R. Seadawy, D. Lu, W.A. Albarakati, Dispersive solitary wave and soliton solutions of the gernalized third order nonlinear Schrödinger dynamical equation by modified analytical method. Results Phys. 15, 102641 (2019)

    Article  Google Scholar 

  52. K. Hosseini, M. Osman, M. Mirzazadeh, F. Rabiei, Investigation of different wave structures to the generalized third-order nonlinear Scrödinger equation. Optik 206, 164259 (2020)

    Article  ADS  Google Scholar 

  53. K.K. Al-Kalbani, K. Al-Ghafri, E. Krishnan, A. Biswas, Pure-cubic optical solitons by Jacobi’s elliptic function approach. Optik 243, 167404 (2021)

    Article  ADS  Google Scholar 

  54. D. Lu, A.R. Seadawy, J. Wang, M. Arshad, U. Farooq, Soliton solutions of the generalised third-order nonlinear Schrödinger equation by two mathematical methods and their stability. Pramana 93, 1–9 (2019)

    Article  Google Scholar 

  55. N.A. Kudryashov, Implicit solitary waves for one of the generalized nonlinear Schrödinger equations. Mathematics 9(23), 3024 (2021)

    Article  Google Scholar 

  56. M. Ozisik, A. Secer, M. Bayram, H. Aydin, An encyclopedia of Kudryashov’s integrability approaches applicable to optoelectronic devices. Optik 265, 169499 (2022)

    Article  ADS  Google Scholar 

  57. N.A. Kudryashov, Method for finding highly dispersive optical solitons of nonlinear differential equations. Optik 206, 163550 (2020)

    Article  ADS  Google Scholar 

  58. M. Cinar, A. Secer, M. Bayram, Analytical solutions of \((2+1)\)-dimensional Calogero–Bogoyavlenskii–Schiff equation in fluid mechanics/plasma physics using the new Kudryashov method. Phys. Scr. 97(9), 094002 (2022)

    Article  ADS  Google Scholar 

  59. H. Esen, A. Secer, M. Ozisik, M. Bayram, Soliton solutions to the nonlinear higher dimensional Kadomtsev–Petviashvili equation through the new Kudryashov’s technique. Phys. Scr. 97(11), 115104 (2022)

    Article  ADS  Google Scholar 

  60. P. Albayrak, Optical solitons of Biswas–Milovic model having spatio-temporal dispersion and parabolic law via a couple of Kudryashov’s schemes. Optik 279, 170761 (2023)

    Article  ADS  Google Scholar 

Download references

Funding

No funding for this article.

Author information

Authors and Affiliations

Authors

Contributions

All parts contained in the research carried out by the authors through hard work and a review of the various references and contributions in the field of mathematics and applied physics.

Corresponding author

Correspondence to Mustafa Bayram.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The Corresponding Author declares that this manuscript is original, has not been published before and is not currently being considered for publication elsewhere. The Corresponding Author confirms that the manuscript has been read and approved by all the named authors, and there are no other persons who satisfied the criteria for authorship but are not listed. I further confirm that the order of authors listed in the manuscript has been approved by all of us. We understand that the Corresponding Author is the sole contact for the Editorial process and is responsible for communicating with the other authors about progress, submissions of revisions and final approval of proofs.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esen, H., Onder, I., Secer, A. et al. Investigating of the pure-cubic optical solitons in the presence of spatio-temporal and inter-modal dispersions. Eur. Phys. J. Plus 138, 1029 (2023). https://doi.org/10.1140/epjp/s13360-023-04661-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04661-3

Navigation