Skip to main content
Log in

Transmission and conductance across junctions of isotropic and anisotropic three-dimensional semimetals

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We compute the transmission coefficients and zero-temperature conductance for chiral quasiparticles propagating through various geometries, which consist of junctions of three-dimensional nodal point semimetals. In the first scenario, we consider a potential step with two Rarita–Schwinger–Weyl or two birefringent semimetals, which are tilted with respect to the other on the two sides of the junction. The second set-up consists of a junction between a doped Dirac semimetal and a ferromagnetic Weyl semimetal, where an intrinsic magnetization present in the latter splits the doubly-degenerate Dirac node into a pair of Weyl nodes. A scalar potential is also applied in the region where the Weyl semimetal phase exists. Finally, we study sandwiches of Weyl/multi-Weyl semimetals, with the middle region being subjected to both scalar and vector potentials. Our results show that a nonzero transmission spectrum exists where the areas, enclosed by the Fermi surface projections (in the plane perpendicular to the propagation axis) of the incidence and transmission regions, overlap. Such features can help engineer unidirectional carrier propagation, topologically protected against impurity backscattering, because of the chiral nature of the charge carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

No data was used for the research described in the article.

Notes

  1. As usual, \(\varvec{\sigma }\) represents the vector of the three Pauli matrices, such that the Weyl semimetal hosts pseudospin-1/2 quasiparticles.

  2. We note that \(J=1\) for Weyl semimetals, making the dispersion isotropic.

References

  1. B. Bradlyn, J. Cano, Z. Wang, M.G. Vergniory, C. Felser, R.J. Cava, B.A. Bernevig, Beyond Dirac and Weyl fermions: unconventional quasiparticles in conventional crystals. Science 353, aaf5037 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. C. Fang, M.J. Gilbert, X. Dai, B.A. Bernevig, Multi-Weyl topological semimetals stabilized by point group symmetry. Phys. Rev. Lett. 108, 266802 (2012). https://doi.org/10.1103/PhysRevLett.108.266802

    Article  ADS  Google Scholar 

  3. L. Liang, Y. Yu, Semimetal with both Rarita-Schwinger-Weyl and Weyl excitations. Phys. Rev. B 93, 045113 (2016). https://doi.org/10.1103/PhysRevB.93.045113

    Article  ADS  Google Scholar 

  4. M.P. Kennett, N. Komeilizadeh, K. Kaveh, P.M. Smith, Birefringent breakup of Dirac fermions on a square optical lattice. Phys. Rev. A 83, 053636 (2011). https://doi.org/10.1103/PhysRevA.83.053636

    Article  ADS  Google Scholar 

  5. B. Roy, M.P. Kennett, K. Yang, V. Juričić, From birefringent electrons to a marginal or non-fermi liquid of relativistic spin-\(1/2\) fermions: an emergent superuniversality. Phys. Rev. Lett. 121, 157602 (2018). https://doi.org/10.1103/PhysRevLett.121.157602

    Article  ADS  Google Scholar 

  6. I. Mandal, Robust marginal fermi liquid in birefringent semimetals. Phys. Lett. A 418, 127707 (2021). https://doi.org/10.1016/j.physleta.2021.127707

    Article  MathSciNet  MATH  Google Scholar 

  7. S. Weinberg, The quantum theory of fields. Vol. 3: Supersymmetry, Cambridge University Press, (2013)

  8. I. Boettcher, Interplay of topology and electron-electron interactions in Rarita-Schwinger-Weyl semimetals. Phys. Rev. Lett. 124, 127602 (2020). https://doi.org/10.1103/PhysRevLett.124.127602

    Article  ADS  MathSciNet  Google Scholar 

  9. J.M. Link, I. Boettcher, I.F. Herbut, \(d\)-wave superconductivity and Bogoliubov-Fermi surfaces in Rarita-Schwinger-Weyl semimetals. Phys. Rev. B 101, 184503 (2020). https://doi.org/10.1103/PhysRevB.101.184503

    Article  ADS  Google Scholar 

  10. I. Mandal, Transmission in pseudospin-1 and pseudospin-3/2 semimetals with linear dispersion through scalar and vector potential barriers. Phys. Lett. A 384, 126666 (2020). https://doi.org/10.1016/j.physleta.2020.126666

    Article  MathSciNet  MATH  Google Scholar 

  11. G. Xu, H. Weng, Z. Wang, X. Dai, Z. Fang, Chern semimetal and the quantized anomalous Hall effect in HgCr\(_{2}\)Se\(_{4}\). Phys. Rev. Lett. 107, 186806 (2011). https://doi.org/10.1103/PhysRevLett.107.186806

    Article  ADS  Google Scholar 

  12. S.-M. Huang, S.-Y. Xu, I. Belopolski, C.-C. Lee, G. Chang, B. Wang, N. Alidoust, G. Bian, M. Neupane, C. Zhang et al., A Weyl fermion semimetal with surface fermi arcs in the transition metal monopnictide TaAs class. Nat. Commun. 6, 7373 (2015). https://doi.org/10.1038/ncomms8373

    Article  ADS  Google Scholar 

  13. S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee et al., Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015). https://doi.org/10.1126/science.aaa9297

    Article  ADS  Google Scholar 

  14. S.-M. Huang, S.-Y. Xu, I. Belopolski, C.-C. Lee, G. Chang, T.-R. Chang, B. Wang, N. Alidoust, G. Bian, M. Neupane, D. Sanchez, H. Zheng, H.-T. Jeng, A. Bansil, T. Neupert, H. Lin, M.Z. Hasan, New type of Weyl semimetal with quadratic double Weyl fermions. Proc. Natl. Acad. Sci. 113, 1180 (2016). https://doi.org/10.1073/pnas.1514581113

    Article  ADS  Google Scholar 

  15. G. Volovik, https://books.google.pl/books?id=6uj76kFJOHEC The Universe in a Helium Droplet, International Series of Monographs on Physics, OUP Oxford, (2009)

  16. P. Goswami, A.H. Nevidomskyy, Topological Weyl superconductor to diffusive thermal Hall metal crossover in the B phase of UPt\(_{3}\). Phys. Rev. B 92, 214504 (2015). https://doi.org/10.1103/PhysRevB.92.214504

    Article  ADS  Google Scholar 

  17. M.H. Fischer, T. Neupert, C. Platt, A.P. Schnyder, W. Hanke, J. Goryo, R. Thomale, M. Sigrist, Chiral \(d\)-wave superconductivity in SrPtAs. Phys. Rev. B 89, 020509 (2014). https://doi.org/10.1103/PhysRevB.89.020509

    Article  ADS  Google Scholar 

  18. B. Roy, S.A.A. Ghorashi, M.S. Foster, A.H. Nevidomskyy, Topological superconductivity of spin-\(3/2\) carriers in a three-dimensional doped Luttinger semimetal. Phys. Rev. B 99, 054505 (2019). https://doi.org/10.1103/PhysRevB.99.054505

    Article  ADS  Google Scholar 

  19. Q. Liu, A. Zunger, Predicted realization of cubic Dirac fermion in quasi-one-dimensional transition-metal monochalcogenides. Phys. Rev. X 7, 021019 (2017). https://doi.org/10.1103/PhysRevX.7.021019

    Article  Google Scholar 

  20. D. Takane, Z. Wang, S. Souma, K. Nakayama, T. Nakamura, H. Oinuma, Y. Nakata, H. Iwasawa, C. Cacho, T. Kim, K. Horiba, H. Kumigashira, T. Takahashi, Y. Ando, T. Sato, Observation of chiral fermions with a large topological charge and associated Fermi-arc surface states in CoSi. Phys. Rev. Lett. 122, 076402 (2019). https://doi.org/10.1103/PhysRevLett.122.076402

    Article  ADS  Google Scholar 

  21. D.S. Sanchez, I. Belopolski, T.A. Cochran, X. Xu, J.-X. Yin, G. Chang, W. Xie, K. Manna, V. Süß, C.-Y. Huang, N. Alidoust, D. Multer, S.S. Zhang, N. Shumiya, X. Wang, G.-Q. Wang, T.-R. Chang, C. Felser, S.-Y. Xu, S. Jia, H. Lin, M.Z. Hasan, Nature 567, 500 (2019). https://doi.org/10.1038/s41586-019-1037-2

    Article  ADS  Google Scholar 

  22. N.B.M. Schröter, D. Pei, M.G. Vergniory, Y. Sun, K. Manna, F. de Juan, J.A. Krieger, V. Süss, M. Schmidt, P. Dudin, B. Bradlyn, T.K. Kim, T. Schmitt, C. Cacho, C. Felser, V.N. Strocov, Y. Chen, Chiral topological semimetal with multifold band crossings and long Fermi arcs. Nat. Phys. 15, 759 (2019). https://doi.org/10.1038/s41567-019-0511-y

    Article  Google Scholar 

  23. B.Q. Lv, Z.-L. Feng, J.-Z. Zhao, N.F.Q. Yuan, A. Zong, K.F. Luo, R. Yu, Y.-B. Huang, V.N. Strocov, A. Chikina, A.A. Soluyanov, N. Gedik, Y.-G. Shi, T. Qian, H. Ding, Observation of multiple types of topological fermions in pdbise. Phys. Rev. B 99, 241104 (2019). https://doi.org/10.1103/PhysRevB.99.241104

    Article  ADS  Google Scholar 

  24. B. Bradlyn, J. Cano, Z. Wang, M.G. Vergniory, C. Felser, R.J. Cava, B.A. Bernevig, Beyond dirac and Weyl fermions: Unconventional quasiparticles in conventional crystals. Science 353, aaf5037 (2016b). https://doi.org/10.1126/science.aaf5037

    Article  MathSciNet  MATH  Google Scholar 

  25. M. Ezawa, Pseudospin-3/2 fermions, type-II Weyl semimetals, and critical Weyl semimetals in tricolor cubic lattices. Phys. Rev. B 94, 195205 (2016). https://doi.org/10.1103/PhysRevB.94.195205

    Article  ADS  Google Scholar 

  26. T.H. Hsieh, J. Liu, L. Fu, Topological crystalline insulators and Dirac octets in antiperovskites. Phys. Rev. B 90, 081112 (2014). https://doi.org/10.1103/PhysRevB.90.081112

    Article  ADS  Google Scholar 

  27. C. Chen, S.-S. Wang, L. Liu, Z.-M. Yu, X.-L. Sheng, Z. Chen, S.A. Yang, Ternary wurtzite CaAgBi materials family: A playground for essential and accidental, type-I and type-II Dirac fermions. Phys. Rev. Mater. 1, 044201 (2017). https://doi.org/10.1103/PhysRevMaterials.1.044201

    Article  Google Scholar 

  28. F. Buccheri, R. Egger, A. De Martino, Transport, refraction, and interface arcs in junctions of Weyl semimetals. Phys. Rev. B 106, 045413 (2022). https://doi.org/10.1103/PhysRevB.106.045413

    Article  ADS  Google Scholar 

  29. M. Yang, Q.-T. Hou, R.-Q. Wang, Electronic non-coplanar refraction and deflected diffraction of weyl-node-mismatch junctions. New J. Phys. 21, 113057 (2019). https://doi.org/10.1088/1367-2630/ab56b9

    Article  ADS  Google Scholar 

  30. Y. Ominato, K. Kobayashi, K. Nomura, Anisotropic magnetotransport in Dirac-Weyl magnetic junctions. Phys. Rev. B 95, 085308 (2017). https://doi.org/10.1103/PhysRevB.95.085308

    Article  ADS  Google Scholar 

  31. H.-F. Zhu, X.-Q. Yang, J. Xu, S. Cao, Barrier tunneling of quasiparticles in double-Weyl semimetals. Eur. Phys. J. B 93, 4 (2020). https://doi.org/10.1140/epjb/e2019-100466-y

    Article  ADS  Google Scholar 

  32. Y.-H. Deng, H.-F. Lü, S.-S. Ke, Y. Guo, H.-W. Zhang, Quantum tunneling through a rectangular barrier in multi-Weyl semimetals. Phys. Rev. B 101, 085410 (2020). https://doi.org/10.1103/PhysRevB.101.085410

    Article  ADS  Google Scholar 

  33. D. Sinha, K. Sengupta, Transport across junctions of a weyl and a multi-weyl semimetal. Phys. Rev. B 99, 075153 (2019). https://doi.org/10.1103/PhysRevB.99.075153

    Article  ADS  Google Scholar 

  34. I. Mandal, A. Sen, Tunneling of multi-Weyl semimetals through a potential barrier under the influence of magnetic fields. Phys. Lett. A 399, 127293 (2021). https://doi.org/10.1016/j.physleta.2021.127293

    Article  MathSciNet  MATH  Google Scholar 

  35. A. Matulis, F.M. Peeters, P. Vasilopoulos, Wave-vector-dependent tunneling through magnetic barriers. Phys. Rev. Lett. 72, 1518 (1994). https://doi.org/10.1103/PhysRevLett.72.1518

    Article  ADS  Google Scholar 

  36. F. Zhai, K. Chang, Theory of huge tunneling magnetoresistance in graphene. Phys. Rev. B 77, 113409 (2008). https://doi.org/10.1103/PhysRevB.77.113409

    Article  ADS  Google Scholar 

  37. M. Ramezani Masir, P. Vasilopoulos, F.M. Peeters, Magnetic Kronig-Penney model for Dirac electrons in single-layer graphene. New J. Phys. 11, 095009 (2009). https://doi.org/10.1088/1367-2630/11/9/095009

    Article  ADS  Google Scholar 

  38. S. Bera, S. Sekh, I. Mandal, Floquet transmission in Weyl/multi-Weyl and nodal-line semimetals through a time-periodic potential well. Ann. Phys. (Berlin) 535, 2200460 (2023). https://doi.org/10.1002/andp.202200460

    Article  ADS  Google Scholar 

  39. S. Sekh, I. Mandal, Circular dichroism as a probe for topology in three-dimensional semimetals. Phys. Rev. B 105, 235403 (2022). https://doi.org/10.1103/PhysRevB.105.235403

    Article  ADS  Google Scholar 

  40. M. Salehi, S. Jafari, Quantum transport through 3d Dirac materials. Ann. Phys. 359, 64 (2015). https://doi.org/10.1016/j.aop.2015.04.007

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. J. Tworzydło, B. Trauzettel, M. Titov, A. Rycerz, C.W.J. Beenakker, Sub-poissonian shot noise in graphene. Phys. Rev. Lett. 96, 246802 (2006). https://doi.org/10.1103/PhysRevLett.96.246802

    Article  ADS  Google Scholar 

  42. I. Mandal, Tunneling in Fermi systems with quadratic band crossing points. Ann. Phys. 419, 168235 (2020a). https://doi.org/10.1016/j.aop.2020.168235

    Article  MathSciNet  MATH  Google Scholar 

  43. I. Mandal, Transmission in pseudospin-1 and pseudospin-3/2 semimetals with linear dispersion through scalar and vector potential barriers. Phys. Lett. A 384, 126666 (2020b). https://doi.org/10.1016/j.physleta.2020.126666

    Article  MathSciNet  MATH  Google Scholar 

  44. H. Nielsen, M. Ninomiya, A no-go theorem for regularizing chiral fermions. Phys. Lett. B 105, 219 (1981). https://doi.org/10.1016/0370-2693(81)91026-1

    Article  ADS  Google Scholar 

  45. N.P. Armitage, E.J. Mele, A. Vishwanath, Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018). https://doi.org/10.1103/RevModPhys.90.015001

    Article  ADS  MathSciNet  Google Scholar 

  46. Bovenzisps et al., Twisted Fermi surface of a thin-film Weyl semimetal. New J. Phys. 20, 023023 (2018). https://doi.org/10.1088/1367-2630/aaaa90

    Article  ADS  Google Scholar 

  47. Y. Blanter, M. Büttiker, Shot noise in mesoscopic conductors. Phys. Rep. 336, 1 (2000). https://doi.org/10.1016/S0370-1573(99)00123-4

    Article  ADS  Google Scholar 

  48. B. Roy, P. Goswami, V. Juričić, Interacting Weyl fermions: phases, phase transitions, and global phase diagram. Phys. Rev. B 95, 201102 (2017). https://doi.org/10.1103/PhysRevB.95.201102

    Article  ADS  Google Scholar 

  49. S.P. Mukherjee, J.P. Carbotte, Doping and tilting on optics in noncentrosymmetric multi-Weyl semimetals. Phys. Rev. B 97, 045150 (2018). https://doi.org/10.1103/PhysRevB.97.045150

    Article  ADS  Google Scholar 

  50. C. Yesilyurt, S.G. Tan, G. Liang, M.B.A. Jalil, Klein tunneling in Weyl semimetals under the influence of magnetic field. Sci. Rep. 6, 38862 (2016). https://doi.org/10.1038/srep38862

    Article  ADS  Google Scholar 

  51. Z. Wu, F.M. Peeters, K. Chang, Electron tunneling through double magnetic barriers on the surface of a topological insulator. Phys. Rev. B 82, 115211 (2010). https://doi.org/10.1103/PhysRevB.82.115211

    Article  ADS  Google Scholar 

  52. N. Varnava, J.H. Wilson, J.H. Pixley, D. Vanderbilt, Controllable quantum point junction on the surface of an antiferromagnetic topological insulator. Nat. Commun. 12, 3998 (2021). https://doi.org/10.1038/s41467-021-24276-5

    Article  ADS  Google Scholar 

  53. H. Isobe, L. Fu, Quantum critical points of \(j=\frac{3}{2}\) Dirac electrons in antiperovskite topological crystalline insulators. Phys. Rev. B 93, 241113 (2016). https://doi.org/10.1103/PhysRevB.93.241113

    Article  ADS  Google Scholar 

  54. J.M. Luttinger, Quantum theory of cyclotron resonance in semiconductors: general theory. Phys. Rev. 102, 1030 (1956). https://doi.org/10.1103/PhysRev.102.1030

    Article  ADS  MATH  Google Scholar 

  55. S. Murakami, N. Nagosa, S.-C. Zhang, SU(2) non-Abelian holonomy and dissipationless spin current in semiconductors. Phys. Rev. B 69, 235206 (2004). https://doi.org/10.1103/PhysRevB.69.235206

    Article  ADS  Google Scholar 

  56. E.-G. Moon, C. Xu, Y.B. Kim, L. Balents, Non-Fermi-liquid and topological states with strong spin-orbit coupling. Phys. Rev. Lett. 111, 206401 (2013). https://doi.org/10.1103/PhysRevLett.111.206401

    Article  ADS  Google Scholar 

  57. I. Mandal, S. Gemsheim, Emergence of topological Mott insulators in proximity of quadratic band touching points. Condens. Matter Phys. 22, 13701 (2019). https://doi.org/10.5488/CMP.22.13701

    Article  ADS  Google Scholar 

  58. I. Mandal, K. Ziegler, Robust quantum transport at particle-hole symmetry. EPL (Europhysics Letters) 135, 17001 (2021). https://doi.org/10.1209/0295-5075/ac1a25

    Article  ADS  Google Scholar 

  59. R.M. Nandkishore, S.A. Parameswaran, Disorder-driven destruction of a non-Fermi liquid semimetal studied by renormalization group analysis. Phys. Rev. B 95, 205106 (2017). https://doi.org/10.1103/PhysRevB.95.205106

    Article  ADS  Google Scholar 

  60. I. Mandal, R.M. Nandkishore, Interplay of coulomb interactions and disorder in three-dimensional quadratic band crossings without time-reversal symmetry and with unequal masses for conduction and valence bands. Phys. Rev. B 97, 125121 (2018). https://doi.org/10.1103/PhysRevB.97.125121

    Article  ADS  Google Scholar 

  61. I. Mandal, Fate of superconductivity in three-dimensional disordered Luttinger semimetals. Ann. Phys. 392, 179 (2018). https://doi.org/10.1016/j.aop.2018.03.004

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. S. Bera, I. Mandal, Floquet scattering of quadratic band-touching semimetals through a time-periodic potential well. J. Phys. Condens. Matter 33, 295502 (2021). https://doi.org/10.1088/1361-648X/ac020a

    Article  Google Scholar 

  63. S. Yadav, S. Fazzini, I. Mandal, Magneto-transport signatures in periodically-driven Weyl and multi-Weyl semimetals. Phys. E Low Dimens. Syst. Nanostruct. 144, 115444 (2022). https://doi.org/10.1016/j.physe.2022.115444

    Article  Google Scholar 

  64. A. Messiah, https://books.google.co.in/books?id=Flt8uQAACAAJ Quantum mechanics: two volumes bound as one, dover books on physics ( Dover Publications, year 1999)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ipsita Mandal.

Boundary conditions and continuity of probability flux

Boundary conditions and continuity of probability flux

Let us consider the low-energy expansion of the Hamiltonian around a nodal point, which can be described as

$$\begin{aligned} \mathcal {H} ({\textbf{k}} ) = \textbf{d} ({\textbf{k}}) \cdot \varvec{\mathcal {S}}\,, \end{aligned}$$
(1)

where \(\textbf{d} ({\textbf{k}}) =\lbrace d_x({\textbf{k}}), \, d_y({\textbf{k}}), \, d_z({\textbf{k}}_z) \rbrace\) represents three functions of the momenta, and \(\varvec{\mathcal {S}}\) is a three-vector, made up of the matrices \(S_j\) obeying the algebra \(\left[ S_j, \,S_k \right] =i\,\epsilon _{jkl} \,S_l\) [with \(j, k, l \in \lbrace x,\, y,\, z \rbrace\)], that represents the pseudospin degrees of freedom. Here, we have dealt with the following cases:

  1. (1)

    For the RSW semimetal, \(\varvec{\mathcal {S}}\) is given by the \(4\times 4\) pseudospin-3/2 matrices \({\textbf{J}} =\lbrace J_x, \, J_y,\, J_y\rbrace\) shown in Eq. (2.2).

  2. (2)

    For the pseudospin-1/2 Weyl/multi-Weyl quasiparticles, \(\varvec{\mathcal {S}} = \varvec{\sigma }\), where \(\varvec{\sigma } = \lbrace \sigma _x, \, \sigma _y,\, \sigma _y \rbrace\) represents the three \(2\times 2\) Pauli matrices. The above form for \(\varvec{\mathcal {S}}\) is clear when we note that for the multi-Weyl case, the Hamiltonian around a single node can be written as

    $$\begin{aligned} \mathcal {H} ( {\textbf{k}}) = \frac{v_\perp \, k_\perp ^J }{k_0^{J-1 }} \left[ \cos (J \,\phi _k ) \, \sigma _x + \sin (J\, \phi _k) \, \sigma _y \right] + \chi \,v_z \, k_z \, \sigma _z , \end{aligned}$$

    where \(\phi _k = \arctan (k_y,k_x)\) and \(k_\perp = \sqrt{k_x^2 + k_y^2 }\,\).

  3. (3)

    For the birefringent and Dirac semimetals, we have \(\varvec{\mathcal {S}}\propto \varvec{\sigma } \otimes \varvec{\sigma }\), which appears as a tensor product of the Pauli matrices in two different pseudospin-1/2 spaces.

Now for the cases considered in this manuscript, we have \(d_z ({\textbf{k}}) = v_z \, k_z\) (where \(v_z\) is the Fermi velocity along the z-direction), and the quasiparticles are moving along the z-axis when they encounter junctions (which are aligned perpendicular to the z-axis). In general, the potential V(z) varies across the junction, which we take to be a finite value on either side. To capture this situation, we need to consider the Hamiltonian with the z-part written in position space:

$$\begin{aligned} \tilde{\mathcal {H}}&= \mathcal {H} ( k_x, k_y, k_z \rightarrow -i \,\partial _z ) + V(z) \,,\quad V(z) = {\left\{ \begin{array}{ll} V_1 &{} \text { for } z \le 0 \\ V_2 &{} \text { for } z > 0 \end{array}\right. }\,. \end{aligned}$$
(2)

Then the eigenvalue equation is \(\left( \tilde{\mathcal {H}} -E \right) \tilde{\Psi }_E (k_x, k_y, z) = 0\), where \(\tilde{\Psi }_E\) is an eigenfunction of \(\tilde{\mathcal {H}}\) with eigenvalue E. It is a first order differential equation in z and we intend to find solutions which are finite, continuous, and differentiable over the entire interval \(z \in (-\infty , \infty )\) [64]. In other words, all solutions of a differential equation must be differentiable implying that continuity is a requirement for differentiability. Compare this when the Hamiltonian has a second derivative (e.g., describing a Schrodinger particle) and the differential equation reduces to the problem of the Sturm–Liouville type [64]. For a junction located at \(z=0\), we integrate the above equation over an infinitesimal interval \(2\,\epsilon\) about \(z =0\), and subsequently take the limit \(\epsilon \rightarrow 0\) as follows:

$$\begin{aligned}&\lim _{\epsilon \rightarrow 0} \int _{-\epsilon }^\epsilon dz \left[ d_x \,{\mathcal {S}}_x + d_y \,{\mathcal {S}}_y + v_{z} \,{\mathcal {S}}_z\, \partial _{z} + V(z) - E \right] \tilde{\Psi }_E (k_x,k_y, z) = 0 \,, \end{aligned}$$
(3)

This leads to the boundary conditions

$$\begin{aligned} v_{z_1} \, \tilde{\Psi }_E^{(1)} (k_x,k_y, z) \big \vert _{z = 0^{-}} = v_{z_2} \, \tilde{\Psi }_E^{(2)} (k_x,k_y, z) \big \vert _{z = 0^{+}} \,, \end{aligned}$$
(4)

where the subscripts and the superscripts \(a \in \lbrace 1, \, 2 \rbrace\) refer to the materials on the left and right of the junction, respectively. If we have a 2N-component wavefunction, we get 2N equations. Note that unlike the Schrödinger equation case, we do not have any more boundary conditions. In particular, we do not have a condition for the continuity of the derivative of the wavefunction at the boundary (and this scenario is similar to the case of the relativistic Dirac equation case). This is a fundamental equation and, naturally, holds for all cases discussed in the paper.

Let us assume that \(\left[ \tilde{{\mathcal {H}}}^{(a)} - V(z) \right]\) represents a 2N-band system with the energy eigenvalues given by

$$\begin{aligned} \varepsilon _{a,n}^s (k_x, k_y, k_{z_a}) = s\,c_{a,n} \, \sqrt{ \left( d_x^{(a)} \right) ^2 + \left( d_y^{(a)} \right) ^2 + v_{z_a}^2 \, k_{z_a}^2 } \text { for } n \in [1, N] \text { and } s=\pm \,, \end{aligned}$$
(5)

where the set \(\lbrace c_{a,n} \rbrace\) consists of N real numbers for each value of a. Let \(\lbrace \psi _{a,n}^s (k_x, k_y, k_{z_a} )\rbrace\) represent the set of orthonormal wavefunctions associated with \(\lbrace \varepsilon _{a,n}^s \rbrace\). We also have 2N solutions for the momentum along the z-axis, for a given set of values for the perpendicular momenta \(\lbrace k_x, \,k_y \rbrace\), expressed by \(\pm k_{z_a, n}\), where

$$\begin{aligned} k_{z_a, n} = \frac{1}{v_{z_a}} \, \sqrt{ \left( \frac{ E - V_a }{c_{a,n} } \right) ^2 - \left( d_x^{(a)} \right) ^2-\left( d_z^{(a)} \right) ^2 } \,. \end{aligned}$$
(6)

We assume that \(E > V_1\) is the energy of an incident quasiparticle propagating toward the positive z-axis.

Using the above notations, we take \(\Psi _E^{(1)}\) and \(\Psi _E^{(2)}\) to be linear combinations of plane wave solutions propagating along the z-axis. Suppose the quasiparticles are incident from the left of the junction with the plane wave momentum \(k_{z_1, n_0}\). Then we have

$$\begin{aligned} \tilde{\Psi }_E^{(1)} (k_x, k_y, z)&= \psi _{a,n_0}^+ (k_x, k_y, k_{z_1, n_0}) \, e^{i\,k_{z_1, n_0} \, z} + \sum _{n=1}^{N} r_n \, {\psi _{a,n}^+ (k_x, k_y, -k_{z_1, n}) \, e^{ - i\,k_{z_1, n} \, z}} \,, \nonumber \\ \tilde{\Psi }_E^{(2)} (k_x, k_y, z)&= \sum _{n=1}^{N} t_n \, {\psi _{a,n}^+ (k_x, k_y, k_{z_2, n}) \, e^{ i\,k_{z_2 , n} \, z}} \left[ 1 - \Theta \big ( |\textrm{Im} \,k_{z_2 , n} | \big )\right] . \end{aligned}$$
(7)

The 2N unknown coefficients \(\lbrace r_n, t_n \rbrace\) can be determined by the 2N equations obtained from Eq. (4). Note that a \(t_n\) is defined only for a propagating wave, i.e., when \(k_{z_2, n}\) is real.

The carrier current for each of systems is then along the z-axis, and is captured by the probability flux operator \(\hat{j}_z= \partial _{k_z} \mathcal {H} ({\textbf{k}}) = v_z \, {\mathcal {S}}_z.\) The expectation value of the probability flux along the z-axis is then given by [32]

$$\begin{aligned} \langle j_z \rangle = v_z \,\tilde{\Psi }_E^\dagger \, {\mathcal {S}}_z \,\tilde{\Psi }_E \, . \end{aligned}$$
(8)

Due to the time-independence of the problem, the continuity of the probability flux reduces to \(\partial _z \langle j_z \rangle = 0\). This condition translates into the statement that

$$\begin{aligned}\langle j_z^{(1)} \rangle \Big \vert _{z<0 } &= \langle j_z^{(2)} \rangle \Big \vert _{z> 0} \Rightarrow v_{z_1} \langle \tilde{\Psi }_E^{(1)} (k_x,k_y, z)| \, {\mathcal {S}}_z \, | \tilde{\Psi }_E^{(1)} (k_x,k_y, z) \rangle ^2 \Big \vert _{z < 0}\nonumber \\& = v_{z_2} \langle \tilde{\Psi }_E^{(1)} (k_x,k_y, z)| \, {\mathcal {S}}_z \, | \tilde{\Psi }_E^{(1)} (k_x,k_y, z) \rangle ^2 \Big \vert _{z > 0}. \end{aligned}$$
(9)

Noting that

$$\begin{aligned} v_{z_a} \left[ \psi _{a,n}^s (k_x, k_y, k_{z_a}) \, e^{i \, k_{z_a} \, z}\right] ^\dagger \, {\mathcal {S}}_z \left[ \psi _{a,n}^s (k_x, k_y, k_{z_a}) \, e^{i \, k_{z_a} \, z}\right] = \frac{ v_{z_a} ^2 k_{z_a} }{ \varepsilon _{n, a}^s } \equiv \partial _{k_{z_a}} \varepsilon _{a,n}^s \,, \end{aligned}$$
(10)

Eq. (9) reduces to

$$\begin{aligned}&\partial _{ k_{z_1}} \varepsilon _{1,n_0}^+ \Big \vert _{k_{z_1} = k_{z_1, n_0}} - \sum _n |r_n|^2 \, \partial _{ k_{z_1}} \varepsilon _{1,n}^+ \Big \vert _{k_{z_1} = k_{z_1, n}} = \sum _n |t_n|^2 \, \partial _{ k_{z_2}} \varepsilon _{2,n}^+ \Big \vert _{k_{z_2} = k_{z_2, n}} \nonumber \\ \Rightarrow&\quad 1- {{\mathcal {R}}} = {{\mathcal {T}}} \,, \end{aligned}$$
(11)

where

$$\begin{aligned}&{{\mathcal {R}}} = \sum _n \left( \frac{\partial _{ k_{z_1}} \varepsilon _{1,n}^+ \Big \vert _{k_{z_1} = k_{z_1, n}}}{\partial _{ k_{z_1}} \varepsilon _{1,n_0}^+ \Big \vert _{k_{z_1} = k_{z_1, n_0}}} \right) |r_n|^2 \text { and } {{\mathcal {T}}} = \sum _n \left( \frac{ \partial _{ k_{z_2}} \varepsilon _{2,n}^+ \Big \vert _{k_{z_2} = k_{z_2, n}}}{\partial _{ k_{z_1}} \varepsilon _{1,n_0}^+ \Big \vert _{k_{z_1} = k_{z_1, n_0}}} \right) | t_n|^2 \end{aligned}$$
(12)

are the reflection and transmission probabilities, respectively. This is how the continuity of the probability flux comes into play.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mandal, I. Transmission and conductance across junctions of isotropic and anisotropic three-dimensional semimetals. Eur. Phys. J. Plus 138, 1039 (2023). https://doi.org/10.1140/epjp/s13360-023-04652-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04652-4

Navigation