Skip to main content
Log in

Evolution of modulated seismic waves under the external influence of magma up flow

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

During the occurrence of an earthquake, seismic waves usually carry huge amount of energy through rock materials of the earth crust. By using the method of multiple scale expansion in the semi-discrete approximation, the forced/damped nonlinear Schr\(\ddot{o}\)dinger equation is derived from the modified Burridge–Knopoff model of earthquake fault in which the external influence of magma up flow is considered. Based on the Lagrangian variational approach, we obtained analytical solution of the amplitude equation as modulated seismic waves. It is shown that an increase in the magnitude of the magma thrust force triggered by volcanic eruptions, generally leads to more localized and violent vibrations of earthquake. Results of numerical simulations equally reveal the long-term stability of the modulated seismic waves in a regime of weak damping and magma thrust forces. This study provides a sound theoretical foundation in seismology, as the evolution of modulated seismic waves may serve as a precursor for the occurrence of earthquakes and volcanic eruptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are included in this article.

References

  1. R. Burridge, L. Knopoff, Model and theoretical seismicity. Bull. Seismol. Soc. Am. 57, 341–371 (1967)

    Article  Google Scholar 

  2. J.M. Carlson, J.S. Langer, Properties of earthquakes generated by fault dynamics. Phys. Rev. Lett. 62, 2632 (1989)

    Article  ADS  Google Scholar 

  3. J.M. Carlson, J.S. Langer, Mechanical model of an earthquake fault. Phys. Rev. A 40, 6470–6484 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  4. J.M. Carlson, J.S. Langer, B.E. Shaw, C. Tang, Intrinsic properties of a Burridge–Knopoff model of an earthquake fault. Phys. Rev. A 44, 884–897 (1991)

    Article  ADS  Google Scholar 

  5. J.M. Carlson, J.S. Langer, B.E. Shaw, Dynamics of earthquake faults. Rev. Mod. Phys. 66, 657 (1994)

    Article  ADS  MATH  Google Scholar 

  6. S. Lallemand, Active continental margin. Encycl. Mar. Geosci. 103, 1–6 (2014)

    Google Scholar 

  7. P.G. Akishin, M.V. Altaisky, I. Antoniou, A.D. Budnik, V.V. Ivanov, Burridge–Knopoff model and self-similarity. Chaos Solitons Fractals 11(1–3), 207 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. T.N. Nkomom, J.B. Okaly, A. Mvogo, Dynamics of modulated waves and localized energy in a Burridge and Knopoff model of earthquake with velocity-dependant and hydrodynamics friction forces. Phys. A 583, 126283 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  9. T.N. Nkomom, F.-I.I. Ndzana, J.B. Okaly, A. Mvogo, Dynamics of nonlinear waves in a Burridge and Knopoff model for earthquake with long-range interactions, velocity-dependent and hydrodynamics friction forces. Chaos Solitons Fractals 150, 111196 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  10. N.O. Nfor, E.N. Ndikum, M.T. Marceline, V.N. Nfor, On the possibility of rogue wave generation based on the dynamics of modifed Burridge–Knopoff model of earthquake fault. Ann. Geophys. 65(6), TP641 (2022)

    Google Scholar 

  11. N. Akhmediev, E. Pelinovsky, Discussion and debate: Rogue waves - towards a unifying concept? Eur. Phys. J.-Special Top. 185(1), 1–266 (2010)

    Article  ADS  Google Scholar 

  12. S.A. Fedotov, Magma rates in feeding conduits of different volcanic centres. J. Volcanol. Geoth. Res. 9(4), 379–394 (1981)

    Article  ADS  Google Scholar 

  13. B.A. Chouet, Excitation of a buried magmatic pipe: a seismic source model for volcanic tremor. J. Geophys. Res. 90(2), 1881–1893 (1985)

    Article  ADS  Google Scholar 

  14. Y. Ida, M. Kumazawa, Ascent of magma in a deformable vent. J. Geophys. Res. 91(B9), 9297–9301 (1986)

    Article  ADS  Google Scholar 

  15. B.A. Chouet, P. Gasparini, R. Scarpa, K. Aki, A seismic model for the source of long period events and harmonic tremor. LAVCEI Proc. Volcanol. 3, 133–156 (1992)

    Article  Google Scholar 

  16. Y. Ida, Cyclic fluid effusion accompanied by pressure change: implication for volcanic eruptions and tremor. Geophys. Res. Lett. 23(12), 1457–1460 (1996)

    Article  ADS  Google Scholar 

  17. F.P. Pelap, L.Y. Kagho, C.F. Fogang, Chaotic behavior of earthquakes induced by a nonlinear magma up flow. Chaos Solitons Fractals 87, 71–83 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. C.F. Fogang, F.B. Pelap, G.B. Tanekou, R. Kengne, L.Y. Kagho, T.F. Fozing, R.B. Nana Nbendjo, F. Koumetio, Earthquake dynamic induced by the magma up flow with fractional power law and fractional-order friction. Ann. Geophys. 64(1), SE101 (2021)

    Google Scholar 

  19. L.Y. Kagho, M.W. Dongmo, F.B. Pelap, Dynamics of an earthquake under magma thrust strength. J. Earthq. 434156, (2015)

  20. O. Hirayama, K. Ohtsuka, S. Ishiwata, S. Watanabe, Nonlinear waves in mass-spring systems with velocity-dependent friction. Phys. D 185(2), 97–116 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. N.O. Nfor, P.G. Ghomsi, F.M. Moukam Kakmeni, Localized nonlinear waves in a myelinated nerve fiber with self-excitable membrane. Chin. Phys. B 32, 020504 (2023)

    Article  ADS  Google Scholar 

  22. N.O. Nfor, D. Arnaud, S.B. Yamgoué, Impact of helicoidal interactions and weak damping on the breathing modes of Joyeux-Buyukdagli model of DNA. Indian J. Phys. (2023)

  23. N.O. Nfor, P.G. Ghomsi, F.M. Moukam Kakmeni, Dynamics of coupled mode solitons in bursting neural networks. Phys. Rev. E 97, 022214 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  24. M. Remoissenet, Low-amplitude breather and envelope solitons in quasi-one-dimensional physical models. Phys. Rev. B 33, 2386–2392 (1986)

    Article  ADS  Google Scholar 

  25. S.B. Yamgoué, B. Nana, G.R. Deffo, F.B. Pelap, Propagation of modulated waves in narrow-bandpass one-dimensional lattices. Phys. Rev. E 100, 062209 (2019)

    Article  ADS  Google Scholar 

  26. R.D. Dikandé Bitha, A.M. Dikandé, Elliptic-type soliton combs in optical ring microresonators. Phys. Rev. A 97, 033813 (2018)

    Article  ADS  Google Scholar 

  27. L.A. Lugiato, R. Lefever, Spatial dissipative structures in passive optical systems. Phys. Rev. Lett. 58, 2209 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  28. N.O. Nfor, M.E. Jaja, On dynamics of elliptic solitons in lossy optical fibers. J. Opt. 24, 084002 (2022)

    Article  ADS  Google Scholar 

  29. G.P. Agrawal, Nonlinear Fiber Optics, 3rd edn. (Academic Press, 2001)

    MATH  Google Scholar 

  30. A. Hasegawa, Optical Solitons in Fibers (Springer, 1989)

    Book  Google Scholar 

  31. M. Remoissenet, Waves Called Solitons, 3rd edn. (Springer, 1999)

    Book  MATH  Google Scholar 

  32. A. Mohamadou, T.C. Kofané, Modulational instability and pattern formation in discrete dissipative systems. Phys. Rev. E 73, 046607 (2006)

    Article  ADS  Google Scholar 

  33. A.G. Achu, S.E. Mkam, F.M. Moukam Kakmeni, C. Tchawoua, Periodic soliton trains and informational code structures in an improved soliton model for biomembranes and nerves. Phys. Rev. E 98, 022216 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  34. N.O. Nfor, S.B. Yamgoué, F.M. Moukam Kakmeni, Investigation of bright and dark solitons in \(\alpha ,\,\beta \)-Fermi Pasta Ulam lattice. Chin. Phys. B 30, 020502 (2021)

    Article  ADS  Google Scholar 

  35. A. Sulaiman, F.P. Zenb, H. Alatasc, L.T. Handoko, Dynamics of DNA breathing in the Peyrard–Bishop model with damping and external force. Phys. D 241, 1640–1647 (2012)

    Article  MATH  Google Scholar 

  36. E. Oral, P. Ayoubi, J.P. Ampuero, D. Asimaki, L.F. Bonilla, Kathmandu basin as a local modulator of seismic waves: 2-D modelling of non-linear site response under obliquely incident waves. Geophys. J. Int. 231, 1996–2008 (2022)

    Article  ADS  Google Scholar 

  37. I.A. Mofor, L.C. Tasse, G.B. Tanekou et al., Dynamics of modulated waves in the spring-block model of earthquake with time delay. Eur. Phys. J. Plus 138, 273 (2023)

    Article  Google Scholar 

  38. A. Bizzarri, P. Crupi, Is the initial thermal state of a fault relevant to its dynamic behavior. B. Seismol. Soc. Am. 103(3), 2062–2069 (2013)

    Article  Google Scholar 

  39. A. Bizzarri, Dynamic seismic ruptures on melting fault zones. J. Geophys. Res. 116, B02310 (2011)

    ADS  Google Scholar 

  40. A. Bizzarri, Temperature variations of constitutive parameters can significantly affect the fault dynamics. Earth Planet. Sci. Lett. 306, 72–278 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial assistance from the Cameroon Ministry of Higher Education (through the regular research grants to lecturers of state universities) and to the anonymous reviewers whose suggestions have led to improvement of the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nkeh Oma Nfor.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this scientific publication.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nfor, N.O., Pascal, K.G. Evolution of modulated seismic waves under the external influence of magma up flow. Eur. Phys. J. Plus 138, 956 (2023). https://doi.org/10.1140/epjp/s13360-023-04612-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04612-y

Navigation