Skip to main content
Log in

Hydrostatic pressure, electric field, non-parabolicity and polaronic mass effects on the donor binding energy in a semimagnetic double quantum well

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This study aims to examine the effects of electric field \((F)\), hydrostatic pressure (\(P)\), non-parabolicity (NP), and polaronic mass (PM) on the binding energy \(({E}_{\mathrm{b}})\) of an impurity confined in a semimagnetic \({\mathrm{Cd}}_{1-{x}_{w}}{\mathrm{Mn}}_{{x}_{w}}{\mathrm{Te}}/{\mathrm{Cd}}_{1-{x}_{b}}{\mathrm{Mn}}_{{x}_{b}}{\mathrm{Te}}\) symmetrical double quantum well (DQW) using a variational approach within the effective mass approximation. Additionally, the spin polaronic shift effect caused by the strong exchange interaction between the spin of the magnetic impurity \({\mathrm{Mn}}^{2+}\) and the spin of the confined carrier on the donor states is evaluated by considering the same effects as the \({E}_{\mathrm{b}}\). The results indicate that the \({E}_{\mathrm{b}}\) increases as the \(P\) values increase. Moreover, for an impurity placed at the center of the well, the \({E}_{\mathrm{b}}\) decreases as the strength of the F increases. Also, it has been found that the \({E}_{\mathrm{b}}\) is affected by the influence of non-parabolicity and polaronic mass particularly for narrow well width.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All the files with figures and codes are available. The corresponding author will provide all the files in case they are requested].

References

  1. J.B. Mullin, Compounds; physics, defects, hetero- and nano-structures, crystal growth. Surfaces Appl. (2010). https://doi.org/10.1016/B978-0-08-046409-1.00001-0

    Article  Google Scholar 

  2. J.K. Furdyna, Diluted magnetic semiconductors. J. Appl. Phys. (1988). https://doi.org/10.1063/1.341700

    Article  Google Scholar 

  3. P.S. Kalpana, P. Nithiananthi, K. Jayakumar, Donor states in a semimagnetic Cd1−xinMnxinTe/Cd1−xoutMnxoutTe double quantum well. Superlattices Microstruct. 102, 246–258 (2017). https://doi.org/10.1016/j.spmi.2016.12.042

    Article  ADS  Google Scholar 

  4. A. Fakkahi, A. Sali, M. Jaouane, R. Arraoui, A. Ed-Dahmouny, Study of photoionization cross section and binding energy of shallow donor impurity in multilayered spherical quantum dot. Phys. E: Low Dimens Syst. Nanostruct. 143, 115351 (2022). https://doi.org/10.1016/j.physe.2022.115351

    Article  Google Scholar 

  5. R. Arraoui, A. Sali, A. Ed-Dahmouny, K. El-Bakkari, M. Jaouane, A. Fakkahi, The spatial electric field effect on the impurity binding energy and self-polarization in a double quantum dot. Eur. Phys. J. Plus (2022). https://doi.org/10.1140/epjp/s13360-022-03193-6

    Article  Google Scholar 

  6. A. Ed-Dahmouny, A. Sali, N. Es-Sbai, R. Arraoui, M. Jaouane, A. Fakkahi, K. El-Bakkari, C.A. Duque, Combined effects of hydrostatic pressure and electric field on the donor binding energy, polarizability, and photoionization cross-section in double GaAs/GaAlAs quantum dots. Eur. Phys. J. B. (2022). https://doi.org/10.1140/epjb/s10051-022-00400-2

    Article  Google Scholar 

  7. K. El-Bakkari, A. Sali, E. Iqraoun, A. Rezzouk, N. Es-Sbai, M. Ouazzani Jamil, Effects of the temperature and pressure on the electronic and optical properties of an exciton in GaAs/GaAlAs quantum ring. Phys. B Condens. Matter. 538, 85–94 (2018). https://doi.org/10.1016/j.physb.2018.03.010

    Article  ADS  Google Scholar 

  8. G.X. Wang, L.L. Zhang, H. Wei, External electric field effect on shallow donor impurity states in zinc-blende InGaN/GaN symmetric coupled quantum dots. Adv. Condens. Matter Phys. (2017). https://doi.org/10.1155/2017/5652763

    Article  Google Scholar 

  9. M. Jaouane, A. Sali, A. Ezzarfi, A. Fakkahi, R. Arraoui, Study of hydrostatic pressure, electric and magnetic fields effects on the donor binding energy in multilayer cylindrical quantum dots. Phys. E Low-Dimens. Syst. Nanostruct. 127, 114543 (2021). https://doi.org/10.1016/j.physe.2020.114543

    Article  Google Scholar 

  10. A. Fakkahi, A. Sali, M. Jaouane, R. Arraoui, Hydrostatic pressure, temperature, and electric field effects on the hydrogenic impurity binding energy in a multilayered spherical quantum dot. Appl. Phys. A Mater. Sci. Process. (2021). https://doi.org/10.1007/s00339-021-05055-x

    Article  Google Scholar 

  11. A. Sali, H. Satori, The combined effect of pressure and temperature on the impurity binding energy in a cubic quantum dot using the FEM simulation. Superlattices Microstruct. 69, 38–52 (2014). https://doi.org/10.1016/j.spmi.2014.01.011

    Article  ADS  Google Scholar 

  12. A. Sali, J. Kharbach, A. Rezzouk, M. Ouazzani Jamil, The effects of polaronic mass and conduction band non-parabolicity on a donor binding energy under the simultaneous effect of pressure and temperature basing on the numerical FEM in a spherical quantum dot. Superlattices Microstruct. 104, 93–103 (2017). https://doi.org/10.1016/j.spmi.2017.02.014

    Article  ADS  Google Scholar 

  13. R. Arraoui, A. Sali, A. Ed-Dahmouny, M. Jaouane, A. Fakkahi, Polaronic mass and non-parabolicity effects on the photoionization cross section of an impurity in a double quantum dot. Superlattices Microstruct. 159, 107049 (2021). https://doi.org/10.1016/j.spmi.2021.107049

    Article  Google Scholar 

  14. K. El-Bakkari, A. Sali, E. Iqraoun, A. Ezzarfi, Polaron and conduction band non-parabolicity effects on the binding energy, diamagnetic susceptibility and polarizability of an impurity in quantum rings. Superlattices Microstruct. 148, 106729 (2020). https://doi.org/10.1016/j.spmi.2020.106729

    Article  Google Scholar 

  15. H. El Ghazi, A.J. Peter, Impurity-related nonlinear optical absorption under combined effects of intense laser field and band-edge nonparabolicity on InGaN QW. Int. J. Mod. Phys. B 29, 1–10 (2015). https://doi.org/10.1142/S0217979215501106

    Article  Google Scholar 

  16. A.L. Morales, C.A. Duque, Hydrostatic pressure effects on the donor impurity binding in symmetrical GaAs/GaAlAs double quantum well. Rev. Colomb. Fis. 37, 199–202 (2005)

    Google Scholar 

  17. A.L. Morales, N. Raigoza, A. Montes, N. Porras-Montenegro, C.A. Duque, Symmetric and asymmetric GaAs/Al0.3Ga0.7As double quantum well subjected to hydrostatic pressure and applied electric field. Phys. Status Solidi Basic Res. 241, 3224–3230 (2004). https://doi.org/10.1002/pssb.200405224

    Article  ADS  Google Scholar 

  18. N. Raigoza, A.L. Morales, C.A. Duque, Effects of hydrostatic pressure on donor states in symmetrical GaAs/GaAlAs double quantum wells. Phys. B Condens. Matter. 363, 262–270 (2005). https://doi.org/10.1016/j.physb.2005.03.031

    Article  ADS  Google Scholar 

  19. S. Rolnik, J. Adamowski, Stark effect for donors in double quantum wells. Acta Phys. Pol. A. 88, 893–896 (1995). https://doi.org/10.12693/APhysPolA.88.893

    Article  ADS  Google Scholar 

  20. M.M. Gadzhaliev, M.I. Daunov, A.M. Musaev, Dependence of the permittivity of direct gap semiconductors on hydrostatic pressure. J. Exp. Theor. Phys. 121, 263–266 (2015). https://doi.org/10.1134/S106377611508004X

    Article  ADS  Google Scholar 

  21. S. Rajashabala, K. Navaneethakrishnan, Effective masses for donor binding energies in non-magnetic and magnetic quantum well systems: effect of magnetic field, Brazilian. J. Phys. 37, 1134–1140 (2007). https://doi.org/10.1590/S0103-97332007000700011

    Article  Google Scholar 

  22. J.M. Leonora, A.J. Peter, C.K. Yoo, Effects of hydrostatic pressure on optical absorption and refractive index changes of exciton in semimagnetic CdMnTe quantum wells. J. Comput. Theor. Nanosci. 9, 2122–2129 (2012). https://doi.org/10.1166/jctn.2012.2626

    Article  Google Scholar 

  23. Z. Nourbakhsh, Structural, electronic and optical properties of ZnX and CdX compounds (X = Se, Te and S) under hydrostatic pressure. J. Alloys Compd. 505, 698–711 (2010). https://doi.org/10.1016/j.jallcom.2010.06.120

    Article  Google Scholar 

  24. J.M. Leonora, A.J. Peter, Temperature dependent optical properties in a strained diluted magnetic quantum well. E-J. Surf. Sci. Nanotechnol. 10, 388–395 (2012). https://doi.org/10.1380/ejssnt.2012.388

    Article  Google Scholar 

  25. P. Kalpana, K. Jayakumar, Bound magnetic polaron in a semimagnetic double quantum well. Phys. E Low-Dimens. Syst. Nanostructures. 93, 252–256 (2017). https://doi.org/10.1016/j.physe.2017.06.025

    Article  ADS  Google Scholar 

  26. P. Sujanah, A.J. Peter, C.W. Lee, Pressure-induced threshold optical pump intensity in a CdTe/ZnTe quantum dot. Ph Transit 90, 213–226 (2017). https://doi.org/10.1080/01411594.2016.1195909

    Article  Google Scholar 

  27. H. Zhou, High pressure optical studies of semiconductors, the Faculty of Engineering of the University of Glasgow (1992)

  28. R. André, J. Cibert, L.S. Dang, J. Zeman, M. Zigone, Nonlinear piezoelectricity: the effect of pressure on CdTe. Phys. Rev. B-Condens. Matter Mater. Phys. 53, 6951–6954 (1996). https://doi.org/10.1103/PhysRevB.53.6951

    Article  ADS  Google Scholar 

  29. M. Narayanan, A. John Peter, Electric field induced exciton binding energy and its non-linear optical properties in a narrow InSb/InGaSb quantum dot. Superlattices Microstruct. 51, 486–496 (2012). https://doi.org/10.1016/j.spmi.2012.01.012

    Article  ADS  Google Scholar 

  30. A.E. Merad, M.B. Kanoun, H. Aourag, J. Cibert, G. Merad, Electronic and optical properties of CdTe under hydrostatic pressure effect. Superlattices Microstruct. 32, 25–34 (2002). https://doi.org/10.1006/spmi.2002.1054

    Article  ADS  Google Scholar 

  31. I.J. Sherly, P. Nithiananthi, Tuning the dynamics of bound magnetic polaron in asymmetric CdMnTe/CdMnTe Semimagnetic concentric double quantum rings: through magnetic ion concentration and magnetic field. Phys. B Condens. Matter. 600, 412615 (2021). https://doi.org/10.1016/j.physb.2020.412615

    Article  Google Scholar 

  32. J.A. Gaj, R. Planel, G. Fishman, P. Jussieu, I. Introduction, Relation of magneto-optical properties of free excitons to spin alignement of Mn ions in CdMnTe. Solid State Commun. 88, 927–930 (1993). https://doi.org/10.1016/0038-1098(93)90271-N

    Article  ADS  Google Scholar 

  33. X. Li, G. Wang, X. Duan, Materials Science in Semiconductor Processing Effects of electric field and hydrostatic pressure on the exciton states in strained zinc-blende InGaN–GaN coupled double quantum wells. Mater. Sci. Semicond. Process. (2023). https://doi.org/10.1016/j.mssp.2023.107313

    Article  Google Scholar 

  34. B. Chen, K.X. Guo, R.Z. Wang, Y.B. Zheng, B. Li, Linear and nonlinear intersubband refractive index changes in asymmetric coupled quantum wells, Chinese. J. Phys. 47, 326–335 (2009). https://doi.org/10.1142/S0218625X09012226

    Article  Google Scholar 

  35. D.K. Blanks, R.N. Bicknell, N.C. Giles-Taylor, J.F. Schetzina, A. Petrou, J. Warnock, Strain effects in CdMnTe/CdTe superlattices. J. Vac. Sci. Technol. A Vac., Surf., Film 4, 2120–2125 (1986). https://doi.org/10.1116/1.574040

    Article  ADS  Google Scholar 

  36. G. Karczewski, T. Wojtowicz, Y.J. Wang, X. Wu, F.M. Peeters, Electron effective mass and resonant polaron effect in CdTe/CdMgTe quantum wells. Phys. Status Solidi Basic Res. 229, 597–600 (2002). https://doi.org/10.1002/1521-3951(200201)229:1%3c597::AID-PSSB597%3e3.0.CO;2-P

    Article  ADS  Google Scholar 

  37. Z.G. Bai, J.J. Liu, Stress effects on the binding energy of shallow-donor impurities in symmetrical GaAs/AlGaAs double quantum-well wires. J. Phys. Condens. Matter (2007). https://doi.org/10.1088/0953-8984/19/34/346218

    Article  Google Scholar 

  38. A. Ed-Dahmouny, A. Sali, N. Es-Sbai, R. Arraoui, C.A. Duque, The impact of hydrostatic pressure and temperature on the binding energy, linear, third-order nonlinear, and total optical absorption coefficients and refractive index changes of a hydrogenic donor impurity confined in GaAs/AlxGa1−xAs double quantum dots. Eur. Phys. J. Plus (2022). https://doi.org/10.1140/epjp/s13360-022-03002-0

    Article  Google Scholar 

  39. E. Kasapoglu, The hydrostatic pressure and temperature effects on donor impurities in GaAs/Ga1–xAlxAs double quantum well under the external fields. Phys. Lett. Sect A Gen. At. Solid State Phys. 373, 140–143 (2008). https://doi.org/10.1016/j.physleta.2008.10.080

    Article  Google Scholar 

  40. N. Raigoza, A.L. Morales, A. Montes, N. Porras-Montenegro, C.A. Duque, Stress effects on shallow-donor impurity states in symmetrical GaAs/AlGaAs double quantum wells. Phys Rev. B-Condens. Matter Mater. Phys. 69, 1–8 (2004). https://doi.org/10.1103/PhysRevB.69.045323

    Article  Google Scholar 

  41. R.L. Restrepo, G.L. Miranda, C.A. Duque, M.E. Mora-Ramos, Simultaneous effects of hydrostatic pressure and applied electric field on the impurity-related self-polarization in GaAs/GaAlAs multiple quantum wells. J. Lumin. 131, 1016–1021 (2011). https://doi.org/10.1016/j.jlumin.2011.01.014

    Article  Google Scholar 

  42. I.J. Sherly, P. Nithiananthi, Combined effect of stress and nonparabolicity on the diamagnetic susceptibility of donor states in a double quantum well. AIP Conf. Proc. (2018). https://doi.org/10.1063/1.5028716

    Article  Google Scholar 

  43. G. Rezaei, S. Mousavi, E. Sadeghi, External electric field and hydrostatic pressure effects on the binding energy and self-polarization of an off-center hydrogenic impurity confined in a GaAs/AlGaAs square quantum well wire. Phys. B Condens. Matter. 407, 2637–2641 (2012). https://doi.org/10.1016/j.physb.2012.04.014

    Article  ADS  Google Scholar 

  44. N. Angayarkanni, A. John, Peter CW. Lee, Effects of hydrostatic pressure on intrawell and interwell excitons in a strained GaAs/GaAlAs double quantum well system. Phys E Low-Dimens. Syst. Nanostruct. 44(590), 596 (2011). https://doi.org/10.1016/j.physe.2011.10.009

    Article  ADS  Google Scholar 

  45. G.J. Zhao, X.X. Liang, S.L. Ban, Effect of hydrostatic pressure on the binding energies of excitons in quantum wells. Int. J. Mod. Phys. B 21, 2735–2747 (2007). https://doi.org/10.1142/S0217979207037272

    Article  ADS  Google Scholar 

  46. C.L. Beltrán Ríos, N. Porras-Montenegro, Pressure and magnetic field effects on the binding energy of excitonic states in single and coupled GaAs–AlGaAs quantum wells. Microelectron. J. 36, 369–373 (2005). https://doi.org/10.1016/j.mejo.2005.02.092

    Article  Google Scholar 

  47. P. Başer, I. Altuntas, S. Elagoz, The hydrostatic pressure and temperature effects on hydrogenic impurity binding energies in GaAs/InxGa1-xAs/GaAs square quantum well. Superlattices Microstruct. 92, 210–216 (2016). https://doi.org/10.1016/j.spmi.2015.12.010

    Article  ADS  Google Scholar 

  48. P. Kalpana, K. Jayakumar, Impurity states with the effect of bound magnetic polaron in semimagnetic quantum ring. AIP Conf. Proc. (2020). https://doi.org/10.1063/5.0001466

    Article  Google Scholar 

  49. K. Gnanasekar, K. Navaneethakrishnan, Spin polaron in a quantum dot of the diluted magnetic semiconductors. Mod. Phys. Lett. B 18, 419–426 (2004). https://doi.org/10.1142/S0217984904006962

    Article  ADS  Google Scholar 

  50. A.L. Morales, N. Raigoza, A. Montes, N. Porras-Montenegro, C.A. Duque, Effects of electric and magnetic fields on confined donor states in a coupled double quantum well. J. Appl. Phys. 73, 2848–2853 (1992). https://doi.org/10.1063/1.353037

    Article  Google Scholar 

  51. A. Zounoubi, A. Sali, Effect of electric field on the binding energy and polarisation of shallow donor in a GaAs/Ga1–xAlxAs pillbox surrounded by Ga1–yAlyAs. Philos. Mag. 102, 1650–1664 (2022). https://doi.org/10.1080/14786435.2022.2061065

    Article  ADS  Google Scholar 

  52. A. Fakkahi, M. Jaouane, K. Limame, A. Sali, M. Kirak, R. Arraoui, A. EdDahmouny, K. Elbakkari, H. Azmi, The impact of the electric field on the photoionization cross section, polarizability, and donor impurity binding energy in multilayered spherical quantum dot. Appl. Phys. A Mater. Sci. Process. (2023). https://doi.org/10.1007/s00339-023-06472-w

    Article  Google Scholar 

  53. N. Angayarkanni, C.W. Lee, A.J. Peter, Magneto-photoionization of charged exciton in a double quantum well heterostructure in the influence of electric field. J. Comput. Theor. Nanosci. 8, 2313–2320 (2011). https://doi.org/10.1166/jctn.2011.1961

    Article  Google Scholar 

  54. I. Erdogan, O. Akankan, H. Akbas, Effects of hydrostatic pressure on the self-polarization in GaAs/Ga1-x Alx As quantum wells under the electric field. Phys. E Low-Dimens. Syst. Nanostruct. 42, 136–140 (2009). https://doi.org/10.1016/j.physe.2009.09.014

    Article  ADS  Google Scholar 

  55. A. John Peter, The effect of laser field intensity on polarizability in a quantum well. Phys. Lett. Sect A Gen. At. Solid State Phys. 374, 2170–2174 (2010). https://doi.org/10.1016/j.physleta.2010.03.025

    Article  MATH  Google Scholar 

  56. G. Jayam, K. Navaneethakrishnan, Photoionization of donor impurities in quantum wells in an electric field. Solid State Commun. 122, 433–438 (2002). https://doi.org/10.1016/S0038-1098(02)00155-2

    Article  ADS  Google Scholar 

  57. A.J. Peter, V. Lakshminarayana, Effects of electric field on electronic states in a GaAs/GaAlAs quantum dot with different confinements. Chin. Phys. Lett. 25, 3021–3024 (2008). https://doi.org/10.1088/0256-307X/25/8/077

    Article  ADS  Google Scholar 

  58. A.M. Elabsy, P. Csavinszky, K.R. Brownstein, Combined effect of the screening of a donor ion and the conduction band nonparabolicity on the binding energy of a donor at the center of a spherical quantum dot. Int. J. Quantum Chem. 60, 1719–1722 (1996). https://doi.org/10.1002/(SICI)1097-461X(1996)60:7%3c1719::AID-QUA55%3e3.0.CO;2-S

    Article  Google Scholar 

  59. A. Sali, A. Rezzouk, N. Es-Sbai, M.O. Jamil, The simultaneous effects of the wetting layer, intense laser and the conduction band non-parabolicity on the donor binding energy in a InAs/GaAs conical quantum dot using the numerical FEM. Indian J. Pure Appl. Phys. 57, 483–491 (2019). https://doi.org/10.56042/ijpap.v57i7.20359

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization was contributed by HA, KEB, MJ, AED, RA. Acquisition of data was contributed by HA, MJ, AED, RA. Analysis and/or interpretation of data were contributed by HA, KEB, AF, AS, NA. Drafting the manuscript was contributed by HA, KEB, MJ, AED. Revising the manuscript critically for important intellectual content was contributed by HA, AF, RA, AS, NA. Approval of the version of the manuscript to be published was contributed by HA, KEB, MJ, RA, AS, NA.

Corresponding author

Correspondence to H. Azmi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

We the undersigned declare that this manuscript is original, has not been published before and is not currently being considered for publication elsewhere. We confirm that the manuscript has been read and approved by all named authors and that there are no other persons who satisfied the criteria for authorship but are not listed. We further confirm that the order of authors listed in the manuscript has been approved by all of us.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azmi, H., Amri, N., El-Bakkari, K. et al. Hydrostatic pressure, electric field, non-parabolicity and polaronic mass effects on the donor binding energy in a semimagnetic double quantum well. Eur. Phys. J. Plus 138, 952 (2023). https://doi.org/10.1140/epjp/s13360-023-04603-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04603-z

Navigation