Skip to main content
Log in

Charged quark stars represented by the MIT bag approach in \(5\mathcal {D}\) Einstein–Maxwell–Gauss–Bonnet formalism

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Quark stars take significant roles while studying the behavior of strong gravitational fields and supra-nuclear territories. On the other hand, current research on the identification of both radii and masses of compact stars provides significant constraints for the equation of state (EoS) describing the stellar object of interest. Here we mainly focus our awareness on investigating the celestial features of a charged quark star in the five-dimensional (5\(\mathcal {D}\)) form of the Einstein–Maxwell–Gauss–Bonnet (EMGB) formalism of gravity. In this context, we first obtain the governing expressions for a charged quark star represented by the MIT bag model. Subsequently, we discuss the impact of the Gauss–Bonnet (GB) Lagrangian term, which is coupled with the Einstein–Hilbert action through a coupling constant, on the fundamental physical characteristics of the celestial structure. Numerical analyses in which we discuss the dependence of energy density, pressure, and mass on radius support the existence of such a compact star. Furthermore, we show that this new type of quark star meets all the stability and feasibility conditions as well as the necessary astronomical requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

The results are obtained through purely theoretical calculations and can be verified analytically; thus this manuscript has no associated data, or the data will not be deposited.

References

  1. M. Govender, S. Thirukkanesh, Astrophys. Space Sci. 358, 1 (2015)

    Article  Google Scholar 

  2. G. Abbas, S. Qaisar, A. Jawad, Astrophys. Space Sci. 359, 57 (2015)

    Article  ADS  Google Scholar 

  3. C. Møller, Ann. Phys. 12, 118 (1961)

    Article  ADS  Google Scholar 

  4. D. Deb, S.V. Ketov, M. Khlopov, S. Ray, J. Cosmol. Astropart. Phys. 2019, 070 (2019)

    Article  Google Scholar 

  5. M. Ilyas, Eur. Phys. J. C 78, 757 (2018)

    Article  ADS  Google Scholar 

  6. M. Shahzad, G. Abbas, Int. J. Geom. Methods Modern Phys. 16, 1950132 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  7. M. Bhatti, Z. Yousaf, Chin. J. Phys. 73, 115 (2021)

    Article  Google Scholar 

  8. J.M. Pretel, A. Banerjee, A. Pradhan, Eur. Phys. J. C 82, 180 (2022)

    Article  ADS  Google Scholar 

  9. G. Panotopoulos, A. Pradhan, T. Tangphati, A. Banerjee, Chin. J. Phys. 77, 2106 (2022)

    Article  Google Scholar 

  10. I.G. Salako, M. Houndjo, E. Baffou, G. Amoussou, J. Tossa, Gen. Relativ. Gravit. 54, 28 (2022)

    Article  ADS  Google Scholar 

  11. S. Capozziello, M. De Laurentis, Phys. Rep. 509, 167 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  12. S. Capozziello, A. Finch, J.L. Said, A. Magro, Eur. Phys. J. C 81, 1141 (2021)

    Article  ADS  Google Scholar 

  13. K.F. Dialektopoulos, T.S. Koivisto, S. Capozziello, Eur. Phys. J. C 79, 1 (2019)

    Article  Google Scholar 

  14. R. Goswami, A.M. Nzioki, S.D. Maharaj, S.G. Ghosh, Phys. Rev. D 90, 084011 (2014)

    Article  ADS  Google Scholar 

  15. B. Chilambwe, S. Hansraj, S.D. Maharaj, Int. J. Mod. Phys. D 24, 1550051 (2015)

    Article  ADS  Google Scholar 

  16. S. Hansraj, S.D. Maharaj, B. Chilambwe, Phys. Rev. D 100, 124029 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  17. S. Hansraj, M. Govender, L. Moodly, K.N. Singh, Phys. Rev. D 105, 044030 (2022)

    Article  ADS  Google Scholar 

  18. M. Govender, N. Mewalal, S. Hansraj, Eur. Phys. J. C 79, 1 (2019)

    Article  Google Scholar 

  19. S. Hansraj, B. Chilambwe, S.D. Maharaj, Eur. Phys. J. C 75, 1 (2015)

    Article  Google Scholar 

  20. S. Hansraj, G. Megandhren, A. Banerjee, N. Mkhize, Class. Quantum Gravity 38, 065018 (2021)

    Article  ADS  Google Scholar 

  21. S. Maurya, A. Errehymy, R. Nag, M. Daoud, Fortschr. Phys. 70, 2200041 (2022)

    Article  Google Scholar 

  22. S. Maurya, A. Errehymy, M. Jasim, S. Hansraj, N. Al-Harbi, A.-H. Abdel-Aty, Eur. Phys. J. C 82, 1173 (2022)

    Article  ADS  Google Scholar 

  23. A. Errehymy, G. Mustafa, Y. Khedif, M. Daoud, Chin. Phys. C 46, 045104 (2022)

    Article  ADS  Google Scholar 

  24. A. Errehymy, Y. Khedif, G. Mustafa, M. Daoud, Chin. J. Phys. 77, 1502 (2022)

    Article  Google Scholar 

  25. A. Ditta, A. Errehymy, X. Tiecheng, G. Mustafa, H. Alrebdi, A.-H. Abdel-Aty, Eur. Phys. J. Plus 137, 933 (2022)

    Article  Google Scholar 

  26. M. Rahaman, K.N. Singh, A. Errehymy, F. Rahaman, M. Daoud, Eur. Phys. J. C 80, 272 (2020)

    Article  ADS  Google Scholar 

  27. S. Maurya, K. Newton Singh, A. Errehymy, M. Daoud, Eur. Phys. J. Plus 135, 1 (2020)

    Article  Google Scholar 

  28. K.N. Singh, A. Errehymy, F. Rahaman, M. Daoud, Chin. Phys. C 44, 105106 (2020)

    Article  ADS  Google Scholar 

  29. K.N. Singh, S. Maurya, A. Errehymy, F. Rahaman, M. Daoud, Phys. Dark Univ. 30, 100620 (2020)

    Article  Google Scholar 

  30. H. Abedi, M. Salti, Gen. Rel. Gravity 47, 93 (2015)

    Article  ADS  Google Scholar 

  31. M. Salti, O. Aydogdu, H. Yanar, F. Binbay, Mod. Phys. Lett. A 32, 1750183 (2017)

    Article  ADS  Google Scholar 

  32. M. Salti, M. Korunur, I. Acikgoz, N. Pirinccioglu, F. Binbay, Int. J. Mod. Phys. D 27, 1850062 (2018)

    Article  ADS  Google Scholar 

  33. J.M. Pretel, J.D. Arbañil, S.B. Duarte, S.E. Jorás, R.R. Reis, J. Cosmol. Astropart. Phys. 2022, 058 (2022)

    Article  Google Scholar 

  34. A.A. Coley, Gen. Relativ. Gravity 51, 1 (2019)

    Article  ADS  Google Scholar 

  35. S. Jhingan, S.G. Ghosh, Phys. Rev. D 81, 024010 (2010)

    Article  ADS  Google Scholar 

  36. N. Dadhich, S.G. Ghosh, S. Jhingan, Phys. Rev. D 88, 084024 (2013)

    Article  ADS  Google Scholar 

  37. P. Bhar, K.N. Singh, F. Tello-Ortiz, Eur. Phys. J. C 79, 922 (2019)

    Article  ADS  Google Scholar 

  38. N. Dadhich, S. Ghosh, D. Deshkar, Int. J. Mod. Phys. A 20, 1495 (2005)

    Article  ADS  Google Scholar 

  39. P. Bhar, M. Govender, Astrophys. Space Sci. 364, 186 (2019)

    Article  ADS  Google Scholar 

  40. T. Kaluza, Int. J. Mod. Phys. D 27, 1870001 (2018)

    Article  ADS  Google Scholar 

  41. O. Klein, in The Oskar Klein Memorial Lectures: Vol 1: Lectures by CN Yang and S Weinberg ( World Scientific, 1991), pp. 67–80

  42. D. Lovelock, J. Math. Phys. 12, 498 (1971)

    Article  ADS  Google Scholar 

  43. D. Lovelock, J. Math. Phys. 13, 874 (1972)

    Article  ADS  Google Scholar 

  44. B. Zwiebach, Phys. Lett. B 156, 315 (1985)

    Article  ADS  Google Scholar 

  45. B. Zumino, Phys. Rep. 137, 109 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  46. D.G. Boulware, S. Deser, Phys. Rev. Lett. 55, 2656 (1985)

    Article  ADS  Google Scholar 

  47. F. Tangherlini, Il Nuovo Cimento (1955-1965) 38, 153 (1965)

  48. R.C. Myers, M.J. Perry, Ann. Phys. 172, 304 (1986)

    Article  ADS  Google Scholar 

  49. P. Bhar, M. Govender, R. Sharma, Eur. Phys. J. C 77, 1 (2017)

    Article  Google Scholar 

  50. H. Maeda, Phys. Rev. D 73, 104004 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  51. S.D. Maharaj, B. Chilambwe, S. Hansraj, Phys. Rev. D 91, 084049 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  52. M. Gellmann, G. Zweig, Int. J. Mod. Phys. A 28, 1330016 (2013)

    Article  ADS  Google Scholar 

  53. G. Zweig, An SU(3) model for strong interaction symmetry and its breaking. Version 2, 22–101 (1964)

    Google Scholar 

  54. P. Haensel, J.L. Zdunik, R. Schaefer, Astron. Astrophys. 160, 121 (1986)

    ADS  Google Scholar 

  55. D.D. Ivanenko, D.F. Kurdgelaidze, Astrophysics 1, 251 (1965)

    Article  ADS  Google Scholar 

  56. D.D. Ivanenko, D.F. Kurdgelaidze, Lett. al Nuovo Cimento 2, 13 (1969)

    Article  ADS  Google Scholar 

  57. A.R. Bodmer, Phys. Rev. D 4, 1601 (1971)

    Article  ADS  Google Scholar 

  58. E. Witten, Phys. Rev. D 30, 272 (1984)

    Article  ADS  Google Scholar 

  59. N. Itoh, Prog. Theor. Phys. 44, 291 (1970)

    Article  ADS  Google Scholar 

  60. K. Yagi, N. Yunes, Phys. Rep. 681, 1 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  61. K. Komathiraj, S. Maharaj, Int. J. Mod. Phys. D 16, 1803 (2007)

    Article  ADS  Google Scholar 

  62. S. Maharaj, J. Sunzu, S. Ray, Eur. Phys. J. Plus 129, 1 (2014)

    Article  Google Scholar 

  63. S. Thirukkanesh, F. Ragel, Pramana 81, 275 (2013)

    Article  ADS  Google Scholar 

  64. A. Chodos, R. Jaffe, K. Johnson, C.B. Thorn, V. Weisskopf, Phys. Rev. D 9, 3471 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  65. E. Farhi, R.L. Jaffe, Phys. Rev. D 30, 2379 (1984)

    Article  ADS  Google Scholar 

  66. K. Cheng, Z. Dai, T. Lu, Int. J. Mod. Phys. D 7, 139 (1998)

    Article  ADS  Google Scholar 

  67. H. Maeda, M. Nozawa, Phys. Rev. D 77, 064031 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  68. F. Agurto-Sepulveda, M. Chernicoff, G. Giribet, J. Oliva, M. Oyarzo, Phys. Rev. D 107, 084014 (2023)

    Article  ADS  Google Scholar 

  69. R.C. Tolman, Phys. Rev. 55, 364 (1939)

    Article  ADS  Google Scholar 

  70. B. Kuchowicz, Acta Phys. Pol. 33, 541 (1968)

    Google Scholar 

  71. K. Krori, J. Barua, J. Phys. A - Math. Gen. 8, 508 (1975)

    Article  ADS  Google Scholar 

  72. J. Jebsen, Arkiv for Matematik. Astronomi och Fysik 15, 1 (1921)

    Google Scholar 

  73. J. Jebsen, Gen. Rel. Gravity 37, 2253 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  74. G.D. Birkhoff, R.E. Langer, Relativ. Mod. Phys. (Harvard University Press, London, 1923)

    Google Scholar 

  75. G.F.R. Elllis, R. Goswami, Gen. Relativ. Gravity 45, 2123 (2012)

    Article  ADS  Google Scholar 

  76. K. Johnson et al., Acta Phys. Pol., B 6, 8 (1975)

    Google Scholar 

  77. P. Rej, P. Bhar, Int. J. Geom. Methods Mod. Phys. 19, 2250104 (2022)

    Article  Google Scholar 

  78. M.H. Thoma, Space Sci. Rev. 100, 141 (2002)

    Article  ADS  Google Scholar 

  79. J. Madsen, in Hadrons in Dense Matter and Hadrosynthesis: Proceedings of the Eleventh Chris Engelbrecht Summer School Held in Cape Town, South Africa, 4–13 February 1998 ( Springer, 2007), pp. 162–203

  80. P. Elebert, M.T. Reynolds, P.J. Callanan, D.J. Hurley, G. Ramsay, F. Lewis, D.M. Russell, B. Nord, S.R. Kane, L.D. DePoy et al., MNRAS 395, 884 (2009)

    Article  ADS  Google Scholar 

  81. J.I. Kapusta, P. Landshoff, J. Phys. G: Nucl. Part. Phys. 15, 267 (1989)

    Article  ADS  Google Scholar 

  82. M.K. Mak, T. Harko, Proc. R. Soc. A 459, 393 (2003)

    Article  ADS  Google Scholar 

  83. V. Varela, F. Rahaman, S. Ray, K. Chakraborty, M. Kalam, Phys. Rev. D 82, 044052 (2010). arXiv:1004.2165

    Article  ADS  Google Scholar 

  84. P. Rej, A. Errehymy, M. Daoud, Eur. Phys. J. C 83, 392 (2023). arXiv:2305.06748

    Article  ADS  Google Scholar 

  85. S. Monowar Hossein, F. Rahaman, J. Naskar, M. Kalam, S. Ray, Int. J. Mod. Phys. D 21, 1250088 (2012). arXiv:1204.3558

    Article  Google Scholar 

  86. D. Deb, S.R. Chowdhury, S. Ray, F. Rahaman, B. Guha, Ann. Phys. 387, 239 (2017)

    Article  ADS  Google Scholar 

  87. H.A. Buchdahl, Phys. Rev. 116, 1027 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  88. C. Böhmer, T. Harko, Class. Quantum Gravity 23, 6479 (2006)

    Article  ADS  Google Scholar 

  89. H. Andreasson, Commun. Math. Phys. 288, 715 (2009). arXiv:0804.1882

    Article  ADS  MathSciNet  Google Scholar 

  90. P. Rej, P. Bhar, M. Govender, Eur. Phys. J. C 81, 316 (2021)

    Article  ADS  Google Scholar 

  91. N. Aghanim et al. ( Planck Collaboration), Astron. Astrophys. 641, A6 (2020), [Erratum: Astron. Astrophys. 652, C4 (2021)], arXiv:1807.06209

  92. L. Herrera, Phys. Lett. A 165, 206 (1992)

    Article  ADS  Google Scholar 

  93. A. Di Prisco, E. Fuenmayor, L. Herrera, V. Varela, Phys. Lett. A 195, 23 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  94. A. Di Prisco, L. Herrera, V. Varela, Gen. Relativ. Gravity 29, 1239 (1997)

    Article  ADS  Google Scholar 

  95. H. Heintzmann, W. Hillebrandt, Astron. Astrophys. 38, 51 (1975)

    ADS  Google Scholar 

  96. W. Hillebrandt, K.O. Steinmetz, Astron. Astrophys. 53, 283 (1976)

    ADS  Google Scholar 

  97. I. Bombaci, Astron. Astrophys. 305, 871 (1996)

    ADS  Google Scholar 

  98. S. Chandrasekhar, Astrophys. J. 140, 417 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  99. C.C. Moustakidis, Gen. Relativ. Gravity 49, 1 (2017)

    Article  MathSciNet  Google Scholar 

  100. J.R. Oppenheimer, G.M. Volkoff, Phys. Rev. 55, 374 (1939)

    Article  ADS  Google Scholar 

  101. G. Chapline, Proceedings of the Texas Conference on Relativistic Astrophysics, Stanford-CA (2004)

  102. F.S.N. Lobo, Class. Quantum Grav. 23, 1525 (2006)

    Article  ADS  Google Scholar 

  103. Z. Merali, New Sci. 189N2542, 8 (2006)

    Article  Google Scholar 

  104. F.S.N. Lobo, Class. Quantum Gravity 24, 1069 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

PR is thankful to the Inter-University Centre for Astronomy and Astrophysics (IUCAA), Pune, Government of India, for providing Visiting Associateship. MS and OA would like to thank TUBITAK (the Scientific and Technical Research Council of Turkey) for their valuable financial supports given in the year 2023.

Funding

The authors did not receive any funding in the form of financial aid or grant from any institution or organization for the present research work.

Author information

Authors and Affiliations

Authors

Contributions

AK performed mathematical analysis, ran computer codes, and typed the draft. PR contributed to conceptualization, computer code design for data analysis, original draft preparation and overall supervision. MS contributed to the writing of the manuscript and the physical interpretation of this study. OA contributed to the validation and discussing the results from the physical perspective. All authors provided critical feedback and helped shape the research, analysis, and manuscript.

Corresponding author

Correspondence to Pramit Rej.

Ethics declarations

Conflicts of interest

The authors have no financial interest or involvement which is relevant by any means to the content of this study.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karmakar, A., Rej, P., Salti, M. et al. Charged quark stars represented by the MIT bag approach in \(5\mathcal {D}\) Einstein–Maxwell–Gauss–Bonnet formalism. Eur. Phys. J. Plus 138, 914 (2023). https://doi.org/10.1140/epjp/s13360-023-04548-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04548-3

Navigation