Skip to main content
Log in

Mutual inductance calculations of non-identical n-sided planar coils with arbitrary geometry and spatial orientations

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Planar coils are widely used in sensors, wireless chargers, robots, portable devices, medical implants, etc. An important factor in the performance of two magnetically coupled coils is the mutual inductance. However, the mutual inductance measurements between two arbitrarily positioned non-identical n-sided coils with lateral and angular misalignments have not been solved. In this paper, we calculated the mutual inductance between two arbitrarily positioned, non-identical n-sided planar spiral coils by the partial inductance method. The proposed model can adapt the calculations for any planar coil configurations including rectangle, pentagon, hexagon, or any other regular n-sided coils. Even the circular coils are approximated by multiple sides. In addition, measurements can cover lateral displacement, angular rotation, and both simultaneously. The theoretical calculation results are verified with the results of Ansys Maxwell simulations and previously published works in the literature. The relative errors of the presented method with simulation results are less than 0.1% in selected cases. Finally, the superiority of the proposed method over simulation in terms of time consumption is investigated. For the samples studied in this paper, more than 90% of the time could be saved compared to 3D finite element method simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request].

Abbreviations

A:

End point of AB line segment

B:

End point of AB line segment

C:

End point of CD line segment

D:

End point of CD line segment

l:

Length

M:

Mutual inductance

n:

Number of sides

N:

Number of turns

O:

Transmitter coil vertices

P:

Receiver coil vertices in parallel with the transmitter coil

Q:

Receiver coil vertices

R:

Distance

r:

Circumcircle radius

RM:

Rotation matrix

s:

Space between each turn

V:

Relative position vector

w:

Width of coil wire

x:

Cartesian coordinate

y:

Cartesian coordinate

z:

Cartesian coordinate

Δ:

Constant

θ:

Rotation around y-axis

μ:

Magnetic permeability coefficient

φ:

Rotation around x-axis

ψ:

Rotation around z-axis

Ω:

Constant

R:

Receiver coil

T:

Transmitter coil

A:

Point A

AB:

AB line segment

B:

Point B

C:

Point C

CD:

CD line segment

D:

Point D

i:

Turn number of the transmitter coil (the outermost equals 1)

j:

Turn number of the receiver coil (the outermost equals 1)

k:

Vertex number of the receiver coil

m:

Vertex number of the transmitter coil

t:

Total

V:

Relative position vector

AC:

Alternating current

FEM:

Finite element method

WPT:

Wireless power transmission

B:

Byte

H:

Henry

Hz:

Hertz

m:

Meter

min:

Minute

References

  1. S. Darbasi, A.M. Abazari, G. Rezazadeh, Mechanical analysis of a tunable capacitive ultrasound transducer using higher order gradient theory. Appl. Math. Model. 102, 564–577 (2022). https://doi.org/10.1016/j.apm.2021.09.031

    Article  MathSciNet  MATH  Google Scholar 

  2. A.M. Abazari, S.M. Safavi, G. Rezazadeh, M. Fathalilou, Couple stress effect on micro/nanocantilever-based capacitive gas sensor. Int. J. Eng. 29, 852–861 (2016)

    Google Scholar 

  3. T.D. Manh, A.M. Abazari, M.B. Gerdroodbary, N.D. Nam, R. Moradi, H. Babazadeh, Computational simulation of variable magnetic force on heat characteristics of backward-facing step flow. J. Therm. Anal. Calorim. 144, 1585–1596 (2021). https://doi.org/10.1007/s10973-020-09608-9

    Article  Google Scholar 

  4. A. Hassanvand, A.M. Abazari, R. Moradi, A. Shafee, Thermal effects of the nonuniform magnetic force on nanofluid stream along the convergent tube: a computational study. Int. J. Mod. Phys. B 34, 2050264 (2020). https://doi.org/10.1142/S0217979220502641

    Article  ADS  Google Scholar 

  5. D. Maillard, A. De Pastina, A.M. Abazari, L.G. Villanueva, Avoiding transduction-induced heating in suspended microchannel resonators using piezoelectricity. Microsyst. Nanoeng. 7, 34 (2021). https://doi.org/10.1038/s41378-021-00254-1

    Article  ADS  Google Scholar 

  6. A.M. Abazari, M. Fotouhi, H. Tavakkoli, G. Rezazadeh, An experimental study for characterization of size-dependence in microstructures via electrostatic pull-in instability technique. Appl. Phys. Lett. (2020). https://doi.org/10.1063/5.0011335

    Article  Google Scholar 

  7. S. Darbasi, M.J. Mirzaei, A.M. Abazari, G. Rezazadeh, Adaptive under-actuated control for capacitive micro-machined ultrasonic transducer based on an accurate nonlinear modeling. Nonlinear Dyn. 108, 2309–2322 (2022). https://doi.org/10.1007/s11071-022-07330-9

    Article  Google Scholar 

  8. A.O. Mirzaei, A.M. Abazari, H. Tavakkoli, Investigating the effect of geometric design parameters on the mutual inductance between two similar planar spiral coils with inner and outer diameter limits. J. Appl. Res. Electr. Eng. (2023). https://doi.org/10.22055/jaree.2022.40372.1053

    Article  Google Scholar 

  9. C. Bhatnagar, V. Prakash, S. Dahiya, Assistive technologies for efficient mid-range wireless transmission of electricity: a review. Int. J. Res. Eng. Technol. 04, 187–190 (2015). https://doi.org/10.15623/IJRET.2015.0404032

    Article  Google Scholar 

  10. K. Karakoc, A. Suleman, E.J. Park, Analytical modeling of eddy current brakes with the application of time varying magnetic fields. Appl. Math. Model. 40, 1168–1179 (2016). https://doi.org/10.1016/j.apm.2015.07.006

    Article  MathSciNet  MATH  Google Scholar 

  11. C. Zhang, J. Chen, H. Kuang, J. Wu, J. Li, K. Zhang, J. Hao, S. Dong, Y. Huang, Q. Zhang, Y. Wu, J. Luo, Self-powered autonomous wireless sensor system with multivariable sensing capability. Nano Energy 104, 107939 (2022). https://doi.org/10.1016/j.nanoen.2022.107939

    Article  Google Scholar 

  12. I. Okasili, A. Elkhateb, T. Littler, A review of wireless power transfer systems for electric vehicle battery charging with a focus on inductive coupling. Electronics (2022). https://doi.org/10.3390/electronics11091355

    Article  Google Scholar 

  13. I. Cortes, W.-J. Kim, Automated alignment with respect to a moving inductive wireless charger. IEEE Trans. Transp. Electr. 8, 605–614 (2022). https://doi.org/10.1109/TTE.2021.3064782

    Article  Google Scholar 

  14. S. Nandakumar, S. Gunasekaran, R. Mohan Das, C. Bharatiraja, Design of a novel wireless power transfer technique for portable device. Mater. Today Proc. 65, 242–249 (2022). https://doi.org/10.1016/j.matpr.2022.06.126

    Article  Google Scholar 

  15. G. Monti, G.R. De Giovanni, M. De Liso, M. Pascali, L. Tarricone, Wireless power transfer strategies for medical implants: focus on robustness and EM compatibility. IEEE Microw. Mag. 22, 28–41 (2021). https://doi.org/10.1109/MMM.2021.3086315

    Article  Google Scholar 

  16. Z. Wang, A. Markham, Wirelessly powered embedded sensor nodes for internal structural health monitoring. IEEE Trans. Ind. Electron. (2020). https://doi.org/10.1109/TIE.2020.3013536

    Article  Google Scholar 

  17. A. Alipour, A.C. Seifert, B.N. Delman, P.M. Robson, R. Shrivastava, P.R. Hof, G. Adriany, Z.A. Fayad, P. Balchandani, Improvement of magnetic resonance imaging using a wireless radiofrequency resonator array. Sci. Rep. 11, 23034 (2021). https://doi.org/10.1038/s41598-021-02533-3

    Article  ADS  Google Scholar 

  18. Y. Cheng, Y. Shu, A new analytical calculation of the mutual inductance of the coaxial spiral rectangular coils. IEEE Trans. Magn. 50, 1–6 (2014). https://doi.org/10.1109/TMAG.2013.2290972

    Article  ADS  Google Scholar 

  19. P. Tan, F. Yi, C. Liu, Y. Guo, Modeling of mutual inductance for hexagonal coils with horizontal misalignment in wireless power transfer, in: 2018 IEEE Energy Conversion Congress and Exposition, 2018. pp. 1981–1986. https://doi.org/10.1109/ECCE.2018.8558464

  20. W.A. Roshen, D.E. Turcotte, Planar inductors on magnetic substrates. IEEE Trans. Magn. 24, 3213–3216 (1988). https://doi.org/10.1109/20.92379

    Article  ADS  Google Scholar 

  21. E. Paese, M. Geier, R.P. Homrich, R. Rossi, A coupled electric–magnetic numerical procedure for determining the electromagnetic force from the interaction of thin metal sheets and spiral coils in the electromagnetic forming process. Appl. Math. Model. 39, 309–321 (2015). https://doi.org/10.1016/j.apm.2014.05.032

    Article  MathSciNet  Google Scholar 

  22. L. Qian, M. Chen, K. Cui, G. Shi, J. Wang, Y. Xia, Modeling of mutual inductance between two misalignment planar coils in wireless power transfer. IEEE Microw. Wirel. Comp. Lett. 30, 814–817 (2020). https://doi.org/10.1109/LMWC.2020.3006211

    Article  Google Scholar 

  23. H. Tavakkoli, E. Abbaspour-Sani, A. Khalilzadegan, A.-M. Abazari, G. Rezazadeh, Mutual inductance calculation between two coaxial planar spiral coils with an arbitrary number of sides. Microelectron. J. 85, 98–108 (2019). https://doi.org/10.1016/j.mejo.2019.01.012

    Article  Google Scholar 

  24. S. Liu, J. Su, J. Lai, Accurate expressions of mutual inductance and their calculation of archimedean spiral coils. Energies (2019). https://doi.org/10.3390/en12102017

    Article  Google Scholar 

  25. F. Durmus, S. Karagol, Mutual inductance calculation formula for planar square coils, in 2018 2nd International Symposium Multidisciplinary Studies in Innovation Technology. 2018. pp. 1–5. https://doi.org/10.1109/ISMSIT.2018.8567040

  26. S. Liu, J. Su, J. Lai, J. Zhang, H. Xu, Precise modeling of mutual inductance for planar spiral coils in wireless power transfer and its application. IEEE Trans. Power Electron. 36, 9876–9885 (2021). https://doi.org/10.1109/TPEL.2021.3061667

    Article  ADS  Google Scholar 

  27. I. Hussain, D.K. Woo, Simplified mutual inductance calculation of planar spiral coil for wireless power applications. Sensors 22, 1537 (2022). https://doi.org/10.3390/S22041537

    Article  ADS  Google Scholar 

  28. Z. Zhang, K. Shang, Y. Du, J. Zhou, Y. Dong, Mutual inductance calculation of the one-primary multiple-secondary coil system. Int. J. Appl. Electromagn. Mech. 64, 807–816 (2020). https://doi.org/10.3233/JAE-209393

    Article  Google Scholar 

  29. E. Yıldırız, S.B. Kemer, Novel semi-analytical method for mutual inductance calculation of the thin spiral disk coils. IET Electr. Power Appl. 13, 1607–1612 (2019). https://doi.org/10.1049/iet-epa.2019.0206

    Article  Google Scholar 

  30. H. Tavakkoli, E. Abbaspour-Sani, A. Khalilzadegan, G. Rezazadeh, A. Khoei, Analytical study of mutual inductance of hexagonal and octagonal spiral planer coils. Sens Actuat A Phys. 247, 53–64 (2016). https://doi.org/10.1016/j.sna.2016.04.065

    Article  Google Scholar 

  31. M. Yang, Z. Li, M. Zhang, J. Wan, Mutual inductance calculation of circular coils sandwiched between 3-layer magnetic mediums for wireless power transfer systems. Electronics (2021). https://doi.org/10.3390/electronics10233043

    Article  Google Scholar 

  32. X. Zhang, C. Quan, Z. Li, Mutual inductance calculation of circular coils for an arbitrary position with electromagnetic shielding in wireless power transfer systems. IEEE Trans. Transp. Electr. 7, 1196–1204 (2021). https://doi.org/10.1109/TTE.2021.3054762

    Article  Google Scholar 

  33. M. Parise, F. Loreto, D. Romano, G. Antonini, J. Ekman, Accurate computation of mutual inductance of non coaxial pancake coils. Energies (2021). https://doi.org/10.3390/en14164907

    Article  Google Scholar 

  34. E. Aydin, E. Yildiriz, M.T. Aydemir, A new semi-analytical approach for self and mutual inductance calculation of hexagonal spiral coil used in wireless power transfer systems. Electr. Eng. 103, 1769–1778 (2021). https://doi.org/10.1007/s00202-020-01194-1

    Article  Google Scholar 

  35. Y. Wang, X. Xie, Y. Zhou, W. Huan, Calculation and modeling analysis of mutual inductance between coreless circular coils with rectangular cross section in arbitrary spatial position, in 2020 IEEE 5th Information Technology in Mechatronics Engineering Conference. 2020. pp. 1258–1267. https://doi.org/10.1109/ITOEC49072.2020.9141808

  36. S. Babic, C. Akyel, Mutual inductance and magnetic force calculations for coaxial bitter disk coils (Pancakes). IET Sci. Meas. Technol. 10, 972–976 (2016). https://doi.org/10.1049/iet-smt.2016.0221

    Article  Google Scholar 

  37. Y. Ji, H. Wang, J. Lin, S. Guan, X. Feng, S. Li, The mutual inductance calculation between circular and quadrilateral coils at arbitrary attitudes using a rotation matrix for airborne transient electromagnetic systems. J. Appl. Geophys. 111, 211–219 (2014). https://doi.org/10.1016/j.jappgeo.2014.10.003

    Article  ADS  Google Scholar 

  38. S. Raju, R. Wu, M. Chan, C.P. Yue, Modeling of mutual coupling between planar inductors in wireless power applications. IEEE Trans. Power Electron. 29, 481–490 (2014). https://doi.org/10.1109/TPEL.2013.2253334

    Article  ADS  Google Scholar 

  39. H. Wu, W. Niu, S. Wang, S. Yan, An optimization method for control parameters of underwater gliders considering energy consumption and motion accuracy. Appl. Math. Model. 90, 1099–1119 (2021). https://doi.org/10.1016/j.apm.2020.10.015

    Article  MathSciNet  MATH  Google Scholar 

  40. C.R. Paul, Inductance: Loop and Partial (Wiley, 2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amir Musa Abazari or Hadi Tavakkoli.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzaei, A.O., Asadi, M., Ghanbarpour, H. et al. Mutual inductance calculations of non-identical n-sided planar coils with arbitrary geometry and spatial orientations. Eur. Phys. J. Plus 138, 869 (2023). https://doi.org/10.1140/epjp/s13360-023-04493-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04493-1

Navigation