Skip to main content
Log in

Study of mean-first-passage time and Kemeny’s constant of a random walk by normalized Laplacian matrices of a penta-chain network

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The mean first-passage time (MFPT), which refers to the expected time it takes for a system to reach a state \(j\) given its current state \(i\), that is \(t_{ji}\), falls under the fundamental theory of Markov processes. The set of mean first-passage time (MFPT) among the positions of a Markov process expands fundamental assumptions of the system’s kinetics through their relation to the spectrum and eigenvectors of the transition matrix, and the moderation times of the random walker which all are of specific computational position. The explicit and precise computation of MFPT of random walks on networks can typically be highly challenging for networks with more than a few nodes, since they translate the global properties of the random walkers and the network they explore. On the other hand, in a connected network, the Kemeny’s constant (KC) gives the expected time of a random walk from an arbitrary vertex \(x\) to reach a randomly chosen vertex \(y\). The KC is interpreted as a measure of the connectivity level of a network, indicating how effectively the network is interconnected. The KC is an inspiring and helpful quantifier due to its rich applications, mostly in Markov’s chain. In the literature, there are multiple approaches to represent the complete matrix of MFPT. Among them, one widely used and traditional method is to employ the normalized Laplacian matrix. This study presents a new graph spectrum-based approach to compute the MFPT and KC of random walks on penta-chain network (\(^{\prime } \Omega\)). By using the decomposition theorem of normalized Laplacian polynomial, we computed the normalized Laplacian matrix for the penta-chain network (\(^{\prime } \Omega\)). Furthermore, by utilizing the roots and coefficients of the obtained matrices, we derived formulas for both the mean first-passage time (MFPT) and the Kemeny’s constant (KC) for \(^{\prime } \Omega\). Finally, we compared the result of MFPT and KC with the number of pentagons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

No associated data are available.

References

  1. F. Noé, E. Rosta, Markov models of molecular kinetics. J. Chem. Phys. 134, 190401 (2019)

    Article  Google Scholar 

  2. H. Grubmüller, P. Tavan, Molecular dynamics of conformational substates for a simplified protein model. J. Chem. Phys. 101(6), 5047–5057 (1994)

    Article  ADS  Google Scholar 

  3. V.S. Pande, K. Beauchamp, G.R. Bowman, Everything you wanted to know about Markov State Models but were afraid to ask. Methods 52(1), 99–105 (2010)

    Article  Google Scholar 

  4. G.R. Bowman, An overview and practical guide to building Markov state models, in An Introduction to Markov State Models Their Application to Long Timescale Molecular Simulation (2014), pp. 7–22

  5. A. Szabo, K. Schulten, Z. Schulten, First passage time approach to diffusion controlled reactions. J. Chem. Phys. 72(8), 4350–4357 (1980)

    Article  ADS  Google Scholar 

  6. A. Perico et al., Positional time correlation function for one-dimensional systems with barrier crossing: memory function corrections to the optimized Rouse–Zimm approximation. J. Chem. Phys. 98(1), 564–573 (1993)

    Article  ADS  Google Scholar 

  7. S. Silvey, J.G. Kemeny, J.L. Snell, Finite Markov Chains (D. van Nostrand Co. Ltd., London, 1960), 210 pp., 37s. 6d, in Proceedings of the Edinburgh Mathematical Society, vol. 12, no. 1 (1960), pp. 61–62

  8. J.L. Palacios, Closed-form formulas for Kirchhoff index. Int. J. Quantum Chem. 81(2), 135–140 (2001)

    Article  Google Scholar 

  9. J. Berkhout, B.F. Heidergott, Analysis of Markov influence graphs. Oper. Res. 67(3), 892–904 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  10. X. Wang et al., Mean first-passage time on scale-free networks based on rectangle operation. Front. Phys. 9, 675833 (2021)

    Article  Google Scholar 

  11. F.R. Chung, Spectral Graph Theory, vol. 92 (American Mathematical Society, 1997)

    MATH  Google Scholar 

  12. H. Chen, F. Zhang, Resistance distance and the normalized Laplacian spectrum. Discrete Appl. Math. 155(5), 654–661 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Y. Qi, Z. Zhang, Spectral properties of extended Sierpiński graphs and their applications. IEEE Trans. Netw. Sci. Eng. 6(3), 512–522 (2018)

    Article  Google Scholar 

  14. S. Bartolucci et al., “Spectrally gapped” random walks on networks: a mean first passage time formula. SciPost Phys. 11(5), 088 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  15. T. Chen, Z. Yuan, J. Peng, The normalized Laplacian spectrum of n-polygon graphs and applications, in Linear Multilinear Algebra (2022), pp. 1–27

  16. J. Peng, T. Chen, G. Xu, Optimizing the trapping (transport) efficiency in regular branched networks. Trans. Netw. Sci. Eng. 9(3), 1308–1318 (2022)

    Article  MathSciNet  Google Scholar 

  17. Y. Wang, W. Zhang, Kirchhoff index of linear pentagonal chains. Int. J. Quantum Chem. 110(9), 1594–1604 (2010)

    Article  Google Scholar 

  18. S. Zaman, Spectral analysis of three invariants associated to random walks on rounded networks with 2 n-pentagons. Int. J. Comput. Math. 99(3), 465–485 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  19. X. Yu et al., Matrix analysis of hexagonal model and its applications in global mean-first-passage time of random walks. IEEE Access 11, 10045–10052 (2023)

    Article  Google Scholar 

  20. S. Zaman, A. Ullah, Kemeny’s constant and global mean first passage time of random walks on octagonal cell network. Math. Methods Appl. Sci. 46, 9177–9186 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  21. T. Yan et al., Spectral techniques and mathematical aspects of K 4 chain graph. Phys. Scr. 98(4), 045222 (2023)

    Article  ADS  Google Scholar 

  22. D. Li, Y. Hou, The normalized Laplacian spectrum of quadrilateral graphs and its applications. Appl. Math. Comput. 297, 180–188 (2017)

    MathSciNet  MATH  Google Scholar 

  23. Y. Pan, J. Li, Kirchhoff index, multiplicative degree-Kirchhoff index and spanning trees of the linear crossed hexagonal chains. Int. J. Quantum Chem. 118(24), e25787 (2018)

    Article  Google Scholar 

  24. S. Zaman et al., The Kemeny’s constant and spanning trees of hexagonal ring network. Comput. Mater. Con. 73, 6347–6365 (2022)

    Google Scholar 

  25. S. Zaman, X. He, Relation between the inertia indices of a complex unit gain graph and those of its underlying graph. Linear Multilinear Algebra 70(5), 843–877 (2022)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. S. Zaman et al., Structural analysis and topological characterization of sudoku nanosheet. J. Math. 2022 (2022)

  27. A.A. Khabyah et al., Minimum zagreb eccentricity indices of two-mode network with applications in boiling point and benzenoid hydrocarbons. Mathematics 10(9), 1393 (2022)

    Article  Google Scholar 

  28. A. Ullah et al., Network-based modeling of the molecular topology of fuchsine acid dye with respect to some irregular molecular descriptors. J. Chem. 2022 (2022)

  29. S. Zaman et al., Mathematical analysis and molecular descriptors of two novel metal–organic models with chemical applications. Sci. Rep. 13(1), 5314 (2023)

    Article  ADS  Google Scholar 

  30. Y. Sheng, Z. Zhang, Low-mean hitting time for random walks on heterogeneous networks. IEEE Trans. Inf. Theory 65(11), 6898–6910 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. A. K. Chandra et al., The electrical resistance of a graph captures its commute and cover times. in Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing (1989)

  32. X. Zhang et al., Edge-version atom-bond connectivity and geometric arithmetic indices of generalized bridge molecular graphs. Symmetry 10(12), 751 (2018)

    Article  ADS  MATH  Google Scholar 

  33. X. Zhang et al., Multiplicative Zagreb indices of molecular graphs. J. Chem. 2019, 1–19 (2019)

    Article  Google Scholar 

  34. X. Zhang et al., On degree based topological properties of two carbon nanotubes. Polycyclic Aromat. Compd. 42(3), 866–884 (2022)

    Article  Google Scholar 

  35. A. Ullah, Z. Bano, S. Zaman, Computational aspects of two important biochemical networks with respect to some novel molecular descriptors. J. Biomol. Struct. Dyn. 1–15 (2023)

  36. A. Ullah et al., Zagreb connection topological descriptors and structural property of the triangular chain structures. Physica Scripta (2023)

  37. A. Ullah, A. Zeb, S. Zaman, A new perspective on the modeling and topological characterization of H-Naphtalenic nanosheets with applications. J. Mol. Model. 28(8), 211 (2022)

    Article  Google Scholar 

  38. A. Ullah et al., Computational and comparative aspects of two carbon nanosheets with respect to some novel topological indices. Ain Shams Eng. J. 13(4), 101672 (2022)

    Article  Google Scholar 

  39. S.M. Kang et al., Irregularity of Sierpinski graph. J. Discrete Math. Sci. Cryptogr. 22(7), 1269–1280 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  40. X. Zhang et al., Study of hardness of superhard crystals by topological indices. J. Chem. 2021, 1–10 (2021)

    Google Scholar 

  41. X. Zhang et al., Physical analysis of heat for formation and entropy of Ceria Oxide using topological indices. Comb. Chem. High Throughput Screen. 25(3), 441–450 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

This work was contributed equally by all authors.

Corresponding author

Correspondence to Shahid Zaman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

Here, we present detailed proofs of our main results within the given context.

Lemma 6.1

For \( 1 \le j \le 2m\),

$$ b_{j} = \left\{ {\begin{array}{*{20}l} {\frac{12 + 3\sqrt 6 }{{16}}\left( {\frac{\sqrt 3 + \sqrt 2 }{3}} \right)^{j} + \frac{12 - 3\sqrt 6 }{{16}}\left( {\frac{\sqrt 3 - \sqrt 2 }{3}} \right)^{j} } \hfill & {{\text{if}}\;j\;{\text{is}}\;{\text{even}}} \hfill \\ {\frac{4\sqrt 3 + 3\sqrt 3 }{8}\left( {\frac{\sqrt 3 + \sqrt 2 }{3}} \right)^{j} + \frac{4\sqrt 3 - 3\sqrt 3 }{8}\left( {\frac{\sqrt 3 - \sqrt 2 }{3}} \right)^{j} } \hfill & {{\text{if}}\;j\;{\text{is}}\;{\text{odd}}} \hfill \\ \end{array} } \right.. $$

Proof

Since, it is easy to see that \( b_{1} = \frac{1}{2}\), \( b_{2} = \frac{4}{3},\;b_{3} = \frac{29}{{18}}\). For \(3 \le j \le 2m ,\) expanding \({\text{det}}B_{i}\) by its last row gives

$$ b_{j} = \left\{ {\begin{array}{*{20}l} {b_{j - 1} - \frac{1}{9}b_{j - 2} ,} \hfill & {{\text{if}}\;j\;{\text{is}}\;{\text{even}};} \hfill \\ {\frac{4}{3}q_{j - 1} - \frac{1}{9}q_{j - 2} ,} \hfill & {{\text{if}}\;j\;{\text{is}}\;{\text{odd}}.} \hfill \\ \end{array} } \right. $$

Without loss of generality, we assume that \(c_{j} = b_{2j}\) for \(1 \le j \le m\), let \(d_{j} = b_{2i + 1} \) for \(1 \le j \le m - 1\). Furthermore, \(c_{1} = \frac{4}{3},d_{1} = \frac{29}{{18}}\) for so,

$$ \left\{ {\begin{array}{*{20}l} {c_{j} = d_{j - 1} - \frac{1}{9}c_{j - 1} ,} \hfill \\ {d_{j} = \frac{4}{3}c_{j} - \frac{1}{9}d_{j - 1} .} \hfill \\ \end{array} } \right. $$
(2)

from the first part in (2), we have \(d_{j - 1} = c_{j} + \frac{1}{9}c_{j - 1} .\) Therefore, \(d_{j} = c_{j + 1} + \frac{1}{9}c_{j} .\) Replacing \(d_{j - 1}\) and \(d_{j}\) into the second part in (2) gives \( c_{j + 1} = \frac{10}{9}c_{j} - \frac{1}{81}c_{j - 1} ,\;j \ge 2\). By following the same procedure, one can deduce that \( d_{j + 1} = \frac{10}{9}d_{j} - \frac{1}{81}d_{j - 1} ,\;j \ge 2\), and \(b_{j}\). The expression satisfies the following recurrence relation:

$$ b_{j} = \frac{10}{9}b_{j - 2} - \frac{1}{81}b_{j - 4} ,\;b_{1} = \frac{3}{2},\;b_{2} = \frac{4}{3},\;b_{3} = \frac{29}{{18}}. $$
(3)

Then, the characteristic equation of (3) is \( x^{4} = \frac{10}{9}x^{2} - \frac{1}{81}\), the roots of which are \(x_{1} = \frac{\sqrt 2 + \sqrt 3 }{3},x_{2} = - \frac{\sqrt 2 + \sqrt 3 }{3}\) and \( x_{3} = \frac{\sqrt 2 - \sqrt 3 }{3},x_{4} = - \frac{\sqrt 2 - \sqrt 3 }{3}\). The general solution of (3) is given by

$$ b_{j} = \left( {\frac{\sqrt 2 + \sqrt 3 }{3}} \right)^{j} y_{1} + \left( { - \frac{\sqrt 2 + \sqrt 3 }{3}} \right)^{j} y_{2} + \left( {\frac{\sqrt 2 - \sqrt 3 }{3}} \right)^{j} y_{3} + \left( { - \frac{\sqrt 2 - \sqrt 3 }{3}} \right)^{j} y_{4} $$
(4)

In conjunction with the initial conditions provided in Eq. (4), the system of equations leads to the following results:

$$ \left\{ {\begin{array}{*{20}l} {\left( {\frac{\sqrt 2 + \sqrt 3 }{3}} \right)\left( {y_{1} - y_{2} } \right) + \left( { - \frac{\sqrt 2 - \sqrt 3 }{3}} \right)\left( {y_{3} - y_{4} } \right) = \frac{3}{2},} \hfill \\ {\left( {\frac{\sqrt 2 + \sqrt 3 }{3}} \right)^{2} \left( {y_{1} + y_{2} } \right) + \left( { - \frac{\sqrt 2 - \sqrt 3 }{3}} \right)^{2} \left( {y_{3} + y_{4} } \right) = \frac{4}{3},} \hfill \\ {\left( {\frac{\sqrt 2 + \sqrt 3 }{3}} \right)^{3} \left( {y_{1} - y_{2} } \right) + \left( { - \frac{\sqrt 2 - \sqrt 3 }{3}} \right)^{3} \left( {y_{3} - y_{4} } \right) = \frac{29}{{18}},} \hfill \\ {\left( {\frac{\sqrt 2 + \sqrt 3 }{3}} \right)^{4} \left( {y_{1} + y_{2} } \right) + \left( { - \frac{\sqrt 2 - \sqrt 3 }{3}} \right)^{4} \left( {y_{3} + y_{4} } \right) = \frac{79}{{54}}.} \hfill \\ \end{array} } \right. $$

The unique solution of this system is as

\(y_{1} = \frac{12 + 6\sqrt 2 + 8\sqrt 3 + 3\sqrt 6 }{{32}}\), \(y_{2} = \frac{12 - 6\sqrt 2 - 8\sqrt 3 + 3\sqrt 6 }{{32}}\), \(y_{3} = \frac{12 + 6\sqrt 2 - 8\sqrt 3 - 3\sqrt 6 }{{32}}\), \(y_{4} = \frac{12 - 6\sqrt 2 + 8\sqrt 3 - 3\sqrt 6 }{{32}}\).

We get our desired result by substituting \(y_{1} ,y_{2} ,y_{3}\) and \(y_{4}\) in (4).

By expansion-formula, the \(\det \mathcal{H}_{R}\) w.r.t its last row we have:

$$ \det \mathcal{H}_{R} = \frac{3}{2}b_{2m} - \frac{1}{6}b_{2m - 1} , $$

And by Lemma 6.1, we can get this lemma easily.

Lemma 6.2

\(\det \mathcal{H}_{R} = \frac{{\left( {24 + 11\sqrt 6 } \right)\left( {\sqrt 3 + \sqrt 2 } \right)^{2m} + \left( {24 - 11\sqrt 6 } \right)\left( {\sqrt 3 - \sqrt 2 } \right)^{2m} }}{{32 \times 3^{2m} }}\).

Lemma 6.3

For diagonal entries

$$\begin{aligned} j & = 1,2, \ldots 2m + 1 ,\; b_{2m} \\ & \quad = \frac{{\left[ {192 + 143\sqrt 6 + \left( {924 + 336\sqrt 6 } \right)n} \right]\left( {\sqrt 2 + \sqrt 3 } \right)^{2m} + \left[ {192 - 143\sqrt 6 + \left( {924 - 336\sqrt 6 } \right)n} \right]\left( { - \sqrt 2 + \sqrt 3 } \right)^{2m} }}{{512 \cdot 3^{2m} }}. \\ \end{aligned}$$

.

Proof

Since \( b_{ 2m} = \left( { - 1} \right)^{2m} b_{2m}\), is the sum of all of those minors of \(\mathcal{H}_{R}\) which contain \( 2m \) rows and columns, then one has

$$ b_{2m} = \mathop \sum \limits_{j = 1}^{2m + 1} \det \mathcal{H}_{R} \left| {\left\{ j \right\}} \right| = \mathop \sum \limits_{j = 1}^{2m + 1} \det \left( {\begin{array}{*{20}c} {B_{j - 1} } & 0 \\ 0 & {E_{1} } \\ \end{array} } \right) = \mathop \sum \limits_{j = 1}^{2m + 1} \det B_{j - 1} \det E_{j} . $$

Using the property of \(\mathcal{H}_{R}\) we have, \(\det E_{j} = \det B_{2m + 1 - j} .\)

So, \(b_{2m} = 2b_{2m} + \mathop \sum \nolimits_{l = 1}^{m - 1} b_{2l} b_{2m - 2l} + \mathop \sum \nolimits_{p = 1}^{m} b_{2p - 1} b_{2m - 2p + 1}\).

From Lemma 6.1, \(2b_{2m} = \frac{12 + 3\sqrt 6 }{{16}}\left( {\frac{\sqrt 2 + \sqrt 3 }{3}} \right)^{2m} + \frac{12 - 3\sqrt 6 }{{16}}\left( {\frac{ - \sqrt 2 + \sqrt 3 }{3}} \right)^{2m}\).

\(\mathop \sum \limits_{l = 1}^{m - 1} b_{2l} b_{2m - 2l} = \frac{{\left[ {36\left( {11 + 4\sqrt 6 } \right)n - 3\left( {192 + 23\sqrt 6 } \right)} \right]\left( {\sqrt 3 + \sqrt 2 } \right)^{2m} + \left[ {36\left( {11 - 4\sqrt 6 } \right)n - 3\left( {192 - 23\sqrt 6 } \right)} \right]\left( {\sqrt 3 - \sqrt 2 } \right)^{2m} }}{{512 \cdot 3^{2m} }},\)and

$$ \mathop \sum \limits_{p = 1}^{m} b_{2p - 1} b_{2m - 2p + 1} = \frac{{\left[ {12\left( {11 + 4\sqrt 6 } \right)n + 5\sqrt 6 } \right]\left( {\sqrt 3 + \surd 2} \right)^{2m} + \left[ {12\left( {11 - 4\sqrt 6 } \right)n - 5\sqrt 6 } \right]\left( {\sqrt 3 - \surd 2} \right)^{2m} }}{{ 128 \cdot 3^{2m} }} . $$

So, by adding the above three equations we can easily calculate the value of \( b_{2m} .\)

Hence, we introduce a matrix \( N\), where \(N\) is a matrix obtained from \(\mathcal{H}_{Q}\) have \(\left( {1, 3m + 1} \right)\)-entry and the \(\left( {3m + 1, 1} \right)\)-entry by replacing \( 0\). We provide information for j-th order of principal submatrix, \(N_{j}\) get from N's first \(j\) rows and matching columns.

Lemma 6.4

\(\left( { - 1} \right)^{3m} n_{3m} = \frac{7m + 1}{4}\left( \frac{1}{3} \right)^{2m - 1}\).

Proof

Since, the number \(\left( { - 1} \right)^{3m} n_{3m}\) is the sum of all determinants of \(\mathcal{H}_{Q}\) obtained by deleting j-th row and column.

$$ \left( { - 1} \right)^{3m} n_{3m} = \mathop \sum \limits_{j = 1}^{3m + 1} \det \mathcal{H}_{Q} \left| {\left\{ j \right\}} \right| $$

We obtain the result of this lemma by dividing it into two axioms.

Axiom 1

\(1 \le j \le m\).

In this axiom, we delete the j-th row and corresponding column of all matrices present in \(\mathcal{H}_{Q}\), the resulting matrix after applying the elementary operations is

$$ \det \mathcal{H}_{Q} = \left| {\begin{array}{*{20}c} {I_{m - 1} } & {F_{{\left( {m - 1} \right) \times \left( {2m + 1} \right)}} } \\ {F_{{\left( {m - 1} \right) \times \left( {2m + 1} \right)}}^{T} } & {G_{{\left( {2m + 1} \right) \times \left( {2m + 1} \right)}} } \\ \end{array} } \right|. $$

So, we get the following matrix.

$$ \det \mathcal{H}_{Q} \left[ { \left\{ { j } \right\} } \right] = \left| {\begin{array}{*{20}c} \frac{1}{2} & { - \frac{1}{\sqrt 6 }} & 0 & 0 & \cdots & 0 & 0 \\ { - \frac{1}{\sqrt 6 }} & 1 & { - \frac{1}{3}} & 0 & \cdots & 0 & 0 \\ 0 & { - \frac{1}{3}} & \frac{2}{3} & { - \frac{1}{3}} & \cdots & 0 & 0 \\ 0 & 0 & { - \frac{1}{3}} & \frac{2}{3} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & \frac{2}{3} & { - \frac{1}{\sqrt 6 }} \\ 0 & 0 & 0 & 0 & \cdots & { - \frac{1}{\sqrt 6 }} & \frac{1}{2} \\ \end{array} } \right|_{(2m + 1) \times (2m + 1)} . $$

So, after calculation the \(\det \mathcal{H}_{Q} \left[ {\left\{ { j } \right\}} \right] = \frac{1}{4}\left( \frac{1}{3} \right)^{2m - 1}\).

Axiom 2

\(m + 1 \le j \le 3m + 1\).

In this axiom, we delete the (j − m)-th row and corresponding column of all matrices present in \(\mathcal{H}_{Q}\), the resulting matrix after applying the elementary operations is:

$$ \det \mathcal{H}_{Q} \left[ {\left\{ j \right\}} \right] = \left| {\begin{array}{*{20}c} {I_{m} } & {F_{{\left( m \right) \times \left( {2m} \right)}} } \\ {F_{{\left( m \right) \times \left( {2m} \right)}}^{T} } & {G_{{\left( {2m} \right) \times \left( {2m} \right)}} } \\ \end{array} } \right|. $$

So, we get the following matrices;

By deleting \(m + 1\) row and column, we have:

$$ \det \mathcal{H}_{Q} \left[ { \left\{ { j } \right\} } \right] = \left| {\begin{array}{*{20}c} \frac{2}{3} & { - \frac{1}{2}} & 0 & 0 & \cdots & 0 & 0 \\ { - \frac{1}{3}} & \frac{2}{3} & { - \frac{1}{3}} & 0 & \cdots & 0 & 0 \\ 0 & { - \frac{1}{3}} & \frac{2}{3} & { - \frac{1}{3}} & \cdots & 0 & 0 \\ 0 & 0 & { - \frac{1}{3}} & \frac{2}{3} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & \frac{2}{3} & { - \frac{1}{\sqrt 6 }} \\ 0 & 0 & 0 & 0 & \cdots & { - \frac{1}{\sqrt 6 }} & \frac{1}{2} \\ \end{array} } \right|_{(2m) \times (2m)} . $$

Thus,\(\det \mathcal{H}_{Q} \left[ {\left\{ { j } \right\}} \right] = \frac{1}{2}\left( \frac{1}{3} \right)^{2m - 1}\) and similarly, we get the same result by deleting \(3m + 1 \) row and column.

By deleting \(m + 2 \) row and column, we have:

$$ \det \mathcal{H}_{Q} \left[ { \left\{ { j } \right\} } \right] = \left| {\begin{array}{*{20}c} \frac{1}{2} & 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & \frac{2}{3} & { - \frac{1}{3}} & 0 & \cdots & 0 & 0 \\ 0 & { - \frac{1}{3}} & \frac{2}{3} & { - \frac{1}{3}} & \cdots & 0 & 0 \\ 0 & 0 & { - \frac{1}{3}} & \frac{2}{3} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & \frac{2}{3} & { - \frac{1}{\sqrt 6 }} \\ 0 & 0 & 0 & 0 & \cdots & { - \frac{1}{\sqrt 6 }} & \frac{1}{2} \\ \end{array} } \right|_{(2m) \times (2m)} . $$

Thus, \(\det \mathcal{H}_{Q} \left[ {\left\{ { j } \right\}} \right] = \frac{1}{4}\left( \frac{1}{3} \right)^{2m - 2}\) and we get the same result by deleting \(m + 3,m + 4,m + 5, \ldots , 3m\) rows and columns.

So, collectively we have;

$$ \det \mathcal{H}_{Q} \left[ { \left\{ { j } \right\} } \right] = \left\{ {\begin{array}{*{20}l} {\frac{1}{2}\left( \frac{1}{3} \right)^{2m - 1} } \hfill & {{\text{if}}\;j = m + 1\;{\text{or}}\;3m + 1} \hfill \\ {\frac{1}{4}\left( \frac{1}{3} \right)^{2m - 2} } \hfill & {{\text{if}}\;m + 2 \le j \le 3m} \hfill \\ \end{array} } \right.. $$

Thus, after adding the result of these two axioms we have,

$$ \begin{aligned} \left( { - 1} \right)^{3m} n_{3m} & = \mathop \sum \limits_{j = 1}^{3m + 1} \det \mathcal{H}_{Q} \left| {\left\{ j \right\}} \right| = \mathop \sum \limits_{j = 1}^{ m } \det \mathcal{H}_{Q} \left| {\left\{ j \right\}} \right| + \mathop \sum \limits_{j = m + 1}^{3m + 1} \det \mathcal{H}_{Q} \left| {\left\{ j \right\}} \right| \\ & = m \cdot \frac{1}{4}\left( \frac{1}{3} \right)^{2m - 1} + 2 \cdot \frac{1}{2}\left( \frac{1}{3} \right)^{2m - 1} + \left( {2m - 1} \right)\frac{1}{4}\left( \frac{1}{3} \right)^{2m - 2} \\ & = \frac{7m + 1}{4}\left( \frac{1}{3} \right)^{2m - 1} . \\ \end{aligned} $$

Thus, the proof of Lemma 6.4 is complete.

Lemma 6.5

\( \left( { - 1} \right)^{3m - 1} n_{3m - 1} = \frac{{49m^{3} + 42m^{2} + 2m}}{12}\left( \frac{1}{3} \right)^{2m - 1}\).

Proof

Since, the number \(\left( { - 1} \right)^{3m - 1} n_{3m - 1}\) is the sum of all determinants of \(\mathcal{H}_{Q} (1 \le j < k \le 3m + 1)\) obtained by deleting j-th and k-th row and corresponding column.

$$ \left( { - 1} \right)^{3m - 1} n_{3m - 1} = \mathop \sum \limits_{1 \le j < k \le 3m + 1} \det \mathcal{H}_{Q} \left| {\left\{ {j,k} \right\}} \right| $$

We obtain the result of this lemma by dividing it into three axioms.

Axiom 3

\(1 \le j < k \le m\).

In this axiom, we delete the j-th and k-th row and corresponding column of all matrices present in \(\mathcal{H}_{Q}\), and the resulting matrix after applying the elementary operations is

$$ \det \mathcal{H}_{Q} \left[ {[j,k\} } \right] = \left| {\begin{array}{*{20}c} {I_{m - 2} } & {F_{{\left( {m - 2} \right) \times \left( {2m + 1} \right)}} } \\ {F_{{\left( {m - 2} \right) \times \left( {2m + 1} \right)}}^{T} } & {G_{{\left( {2m + 1} \right) \times \left( {2m + 1} \right)}} } \\ \end{array} } \right|. $$

We have the following matrix:

$$ \det \mathcal{H}_{Q} \left[ { \left\{ { j,k } \right\} } \right] = \left| {\begin{array}{*{20}c} \frac{1}{2} & { - \frac{1}{\sqrt 6 }} & 0 & 0 & \cdots & 0 & 0 \\ { - \frac{1}{\sqrt 6 }} & 1 & { - \frac{1}{\sqrt 6 }} & 0 & \cdots & 0 & 0 \\ 0 & { - \frac{1}{3}} & \frac{2}{3} & { - \frac{1}{3}} & \cdots & 0 & 0 \\ 0 & 0 & { - \frac{1}{3}} & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & \frac{2}{3} & { - \frac{1}{\sqrt 6 }} \\ 0 & 0 & 0 & 0 & \cdots & { - \frac{1}{\sqrt 6 }} & \frac{1}{2} \\ \end{array} } \right|_{(2m + 1) \times (2m + 1)} . $$

So, after calculation the \(\det \mathcal{H}_{Q} \left[ {\left\{ { j,k } \right\}} \right] = \frac{1}{2}\left( {k - j + 1} \right)\left( \frac{1}{3} \right)^{2m - 1} .\)

Axiom 4

\(m + 1 \le j < k \le 3m + 1\).

In this axiom, we delete the \(\left( {j - m} \right){\text{th}}\) and \(\left( {k - m} \right){\text{th}}\) row and corresponding column of all matrices present in \(\mathcal{H}_{Q}\), the resulting matrix after applying the elementary operations is

$$ \det \mathcal{H}_{Q} \left[ {\left\{ {j,k} \right\}} \right] = \left| {\begin{array}{*{20}c} {I_{m} } & {F_{{\left( m \right) \times \left( {2m - 1} \right)}} } \\ {F_{{\left( m \right) \times \left( {2m - 1} \right)}}^{T} } & {G_{{\left( {2m - 1} \right) \times \left( {2m - 1} \right)}} } \\ \end{array} } \right|. $$

We have the following matrices:

By deleting \(m + 2 \) and \(m + 3\) row and corresponding column, we have;

$$ \det \mathcal{H}_{Q} \left[ { \left\{ { j,k } \right\} } \right] = \left| {\begin{array}{*{20}c} \frac{1}{2} & 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & \frac{2}{3} & { - \frac{1}{3}} & 0 & \cdots & 0 & 0 \\ 0 & { - \frac{1}{3}} & 1 & { - \frac{2}{3}} & \cdots & 0 & 0 \\ 0 & 0 & { - \frac{1}{3}} & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & \frac{2}{3} & { - \frac{1}{\sqrt 6 }} \\ 0 & 0 & 0 & 0 & \cdots & { - \frac{1}{\sqrt 6 }} & \frac{1}{2} \\ \end{array} } \right|_{(2m - 1) \times (2m - 1)} . $$

Thus, \(\det \mathcal{H}_{Q} \left[ {\left\{ { j,k } \right\}} \right] = \frac{1}{4}\left( {k - j} \right)\left( \frac{1}{3} \right)^{2m - 3}\) and similarly, we get the same result by deleting \(m + 3 \le j < k \le 3m\) rows and columns.

By deleting \(m + 1 \) and \(m + 2\) row and corresponding column, we have;

$$ \det \mathcal{H}_{Q} \left[ { \left\{ { j,k } \right\} } \right] = \left| {\begin{array}{*{20}c} \frac{2}{3} & { - \frac{1}{3}} & 0 & 0 & \cdots & 0 & 0 \\ { - \frac{1}{3}} & \frac{2}{3} & { - \frac{1}{3}} & 0 & \cdots & 0 & 0 \\ 0 & { - \frac{1}{3}} & \frac{2}{3} & { - \frac{1}{3}} & \cdots & 0 & 0 \\ 0 & 0 & { - \frac{1}{3}} & \frac{2}{3} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & \frac{2}{3} & { - \frac{1}{\sqrt 6 }} \\ 0 & 0 & 0 & 0 & \cdots & { - \frac{1}{\sqrt 6 }} & \frac{1}{2} \\ \end{array} } \right|_{(2m - 1) \times (2m - 1)} . $$

Thus,\(\det {\mathcal{H}}_{Q} \left[ {\left\{ { j,k } \right\}} \right] = \frac{1}{2}\left( {k - 1} \right)\left( \frac{1}{3} \right)^{2m - 2}\) and similarly, we get the same result by deleting \(j = m + 1\) and \( m + 3 \le k \le 3m \) rows and columns.

By deleting \(m + 2 \) and \(3m + 1\) row and corresponding column, we have;

$$ \det \mathcal{H}_{Q} \left[ { \left\{ { j,k } \right\} } \right] = \left| {\begin{array}{*{20}c} \frac{1}{2} & 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & \frac{2}{3} & { - \frac{1}{3}} & 0 & \cdots & 0 & 0 \\ 0 & { - \frac{1}{3}} & \frac{2}{3} & { - \frac{1}{3}} & \cdots & 0 & 0 \\ 0 & 0 & { - \frac{1}{3}} & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & \frac{2}{3} & { - \frac{1}{3}} \\ 0 & 0 & 0 & 0 & \cdots & { - \frac{1}{3}} & \frac{2}{3} \\ \end{array} } \right|_{(2m - 1) \times (2m - 1)} . $$

Thus, \(\det \mathcal{H}_{Q} \left[ {\left\{ { j,k } \right\}} \right] = \frac{1}{2}\left( {2m + 1 - j} \right)\left( \frac{1}{3} \right)^{2m - 2}\) and similarly, we get the same result by deleting \(k = 3m + 1 \) and \(m + 3 \le j \le 3m \) rows and columns.

By deleting \(m + 1 \) and \(3m + 1\) row and corresponding column, we have;

$$ \det \mathcal{H}_{Q} \left[ { \left\{ { j,k } \right\} } \right] = \left| {\begin{array}{*{20}c} \frac{2}{3} & { - \frac{1}{3}} & 0 & 0 & \cdots & 0 & 0 \\ { - \frac{1}{3}} & \frac{2}{3} & { - \frac{1}{3}} & 0 & \cdots & 0 & 0 \\ 0 & { - \frac{1}{3}} & \frac{2}{3} & { - \frac{1}{3}} & \cdots & 0 & 0 \\ 0 & 0 & { - \frac{1}{3}} & \frac{2}{3} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & \frac{2}{3} & { - \frac{1}{3}} \\ 0 & 0 & 0 & 0 & \cdots & { - \frac{1}{3}} & \frac{2}{3} \\ \end{array} } \right|_{(2m - 1) \times (2m - 1)} . $$

Thus,

$$ \det \mathcal{H}_{Q} \left[ {\left\{ { j,k } \right\}} \right] = \left( {2m } \right)\left( \frac{1}{3} \right)^{2m - 1} . $$

So, collectively we have: \(\det \mathcal{H}_{Q} \left[ { \left\{ { j } \right\} } \right] = \left\{ {\begin{array}{*{20}l} {\frac{1}{4}\left( {k - j} \right)\left( \frac{1}{3} \right)^{2m - 3} } \hfill & {{\text{if}}\;m + 2 \le j < k \le 3m} \hfill \\ {\frac{1}{2}\left( {2m + 1 - j} \right)\left( \frac{1}{3} \right)^{2m - 2} } \hfill & {{\text{if}}\;j = m + 1 ,m + 2 \le k \le 3m} \hfill \\ {\frac{1}{2}\left( {k - 1} \right)\left( \frac{1}{3} \right)^{2m - 2} } \hfill & {{\text{if}}\;m + 2 \le j \le 3m ,k = 3m + 1} \hfill \\ {\left( {2m} \right)\left( \frac{1}{3} \right)^{2m - 1} } \hfill & {j = m + 1 ,k = 3m + 1} \hfill \\ \end{array} } \right.\).

Axiom 5

\(1 \le j \le m ,m + 1 \le k \le 3m + 1.\)

In this axiom, we delete the j-th \(j - th \) and \(\left( {k - m} \right){\text{th}}\) row and corresponding column of all matrices present in \(\mathcal{H}_{Q}\), and the resulting matrix after applying the elementary operations is

$$ \det \mathcal{H}_{Q} \left[ {\left\{ {j,k} \right\}} \right] = \left| {\begin{array}{*{20}c} {I_{m - 1} } & {F_{{\left( {m - 1} \right) \times \left( {2m } \right)}} } \\ {F_{{\left( {m - 1} \right) \times \left( {2m } \right)}}^{T} } & {G_{{\left( {2m} \right) \times \left( {2m } \right)}} } \\ \end{array} } \right|. $$

So, we get the following matrices:

By deleting 1 and \(m + 1 \) row and column, we have:

$$ \det \mathcal{H}_{Q} \left[ { \left\{ { j,k } \right\} } \right] = \left| {\begin{array}{*{20}c} 1 & { - \frac{1}{3}} & 0 & 0 & \cdots & 0 & 0 \\ { - \frac{1}{3}} & \frac{2}{3} & { - \frac{1}{3}} & 0 & \cdots & 0 & 0 \\ 0 & { - \frac{1}{3}} & \frac{2}{3} & { - \frac{1}{3}} & \cdots & 0 & 0 \\ 0 & 0 & { - \frac{1}{3}} & \frac{2}{3} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & \frac{2}{3} & { - \frac{1}{\sqrt 6 }} \\ 0 & 0 & 0 & 0 & \cdots & { - \frac{1}{\sqrt 6 }} & \frac{2}{3} \\ \end{array} } \right|_{(2m) \times (2m)} . $$

Thus,\(\det \mathcal{H}_{Q} \left[ {\left\{ { j,k } \right\}} \right] = j\left( \frac{1}{3} \right)^{2m - 1} .\) Similarly, we get the same result for \(2 \le j \le n.\)

By deleting 1 and \(m + 2 \) row and column, we have:

$$ \det \mathcal{H}_{Q} \left[ { \left\{ { j,k } \right\} } \right] = \left| {\begin{array}{*{20}c} \frac{1}{2} & 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & \frac{2}{3} & { - \frac{1}{3}} & 0 & \cdots & 0 & 0 \\ 0 & { - \frac{1}{3}} & \frac{2}{3} & { - \frac{1}{3}} & \cdots & 0 & 0 \\ 0 & 0 & { - \frac{1}{3}} & \frac{2}{3} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & \frac{2}{3} & { - \frac{1}{\sqrt 6 }} \\ 0 & 0 & 0 & 0 & \cdots & { - \frac{1}{\sqrt 6 }} & \frac{1}{2} \\ \end{array} } \right|_{(2m) \times (2m)} . $$

Thus, \(\det \mathcal{H}_{Q} \left[ {\left\{ { j,k } \right\}} \right] = \frac{1}{4}\left( {\left| {k - m - 2j} \right| + 1} \right)\left( \frac{1}{3} \right)^{2m - 2} . \) Similarly, we get the same result for \(2 \le j \le m\) and \(m + 2 \le k \le 3m.\)

By deleting 1 and \(3m + 1 \) row and column, we have:

$$ \det \mathcal{H}_{Q} \left[ { \left\{ { j,k } \right\} } \right] = \left| {\begin{array}{*{20}c} \frac{1}{2} & { - \frac{1}{\sqrt 6 }} & 0 & 0 & \cdots & 0 & 0 \\ { - \frac{1}{\sqrt 6 }} & 1 & { - \frac{1}{3}} & 0 & \cdots & 0 & 0 \\ 0 & { - \frac{1}{3}} & \frac{2}{3} & { - \frac{1}{3}} & \cdots & 0 & 0 \\ 0 & 0 & { - \frac{1}{3}} & \frac{2}{3} & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & \frac{2}{3} & { - \frac{1}{3}} \\ 0 & 0 & 0 & 0 & \cdots & { - \frac{1}{3}} & \frac{2}{3} \\ \end{array} } \right|_{(2m) \times (2m)} . $$

Thus, \(\det \mathcal{H}_{Q} \left[ {\left\{ { j,k } \right\}} \right] = \frac{1}{4}\left( {m - j + 1} \right)\left( \frac{1}{3} \right)^{2m - 1} .\) Similarly, we get the same result for \(2 \le j \le m .\)

So, collectively we have;

$$\det \mathcal{H}_{Q} \left[ { \left\{ { j , k} \right\} } \right] = \left\{ {\begin{array}{*{20}l} {j\left( \frac{1}{3} \right)^{2m - 1} } \hfill & {{\text{if}}\;k = m + 1} \hfill \\ {\frac{1}{4}\left( {m - j + 1} \right)\left( \frac{1}{3} \right)^{2m - 1} } \hfill & {{\text{if}}\;k = 3m + 1,\;1 \le j \le m} \hfill \\ {\frac{1}{4}\left( {\left| {k - m - 2j} \right| + 1} \right)\left( \frac{1}{3} \right)^{2m - 2} } \hfill & {{\text{if}}\;1 \le j \le m, m + 2 \le k \le 3m} \hfill \\ \end{array} } \right..$$

Thus, after adding the result of these two axioms we have,

$$ \begin{aligned} & \left( { - 1} \right)^{3m - 1} n_{3m - 1} = \mathop \sum \limits_{1 \le j < k \le m} \det \mathcal{H}_{Q} \left| {\left\{ {j,k} \right\}} \right| + \mathop \sum \limits_{m + 1 \le j < k \le 3m + 1} \det \mathcal{H}_{Q} \left| {\left\{ {j,k} \right\}} \right| + \mathop \sum \limits_{1 \le j \le m,m + 1 \le k \le 3m + 1} \det \mathcal{H}_{Q} \left| {\left\{ {j,k} \right\}} \right| \\ & \quad = \frac{{m^{3} + 3m^{2} - 4m}}{12}\left( \frac{1}{3} \right)^{2m - 1} + \frac{{6m^{3} + 3m^{2} + m}}{6}\left( \frac{1}{3} \right)^{2m - 2} + \frac{{4m^{3} + 7m^{2} }}{4}\left( \frac{1}{3} \right)^{2m - 2} = \frac{{ 49m^{3} + 42m^{2} + 2m}}{12}\left( \frac{1}{3} \right)^{2m - 1} . \\ \end{aligned} $$

Thus, we complete the proof of Lemma 6.5.

The below propositions are a direct consequence of the above lemmas.

Proposition 6.6

Let \({}^{\prime }\Omega\) with \(m\) pentagons denotes a linear pentagonal chain. Then, we have

$$ \mathcal{L}\left( {{}^{\prime }\Omega } \right) = \mathop \sum \limits_{j = 2}^{3m + 1} \frac{1}{{\eta_{j} }} + \mathop \sum \limits_{k = 1}^{2m + 1} \frac{1}{{\xi_{k} }} $$
(5)

here, the spectrums of \(\mathcal{H}_{Q}\) are \(0 = \eta_{1} < \eta_{2} \le \cdots \le \eta_{2m}\) and the spectrums of \(\mathcal{H}_{R}\) are \(0 < \xi_{1} \le \xi_{2} \le \cdots \le \xi_{2m}\).

In the following propositions, we derived the expressions \(\sum\nolimits_{j = 2}^{3m + 1} {\frac{1}{{\eta_{j} }}}\) and \(\sum\nolimits_{k = 1}^{2m + 1} {\frac{1}{{\xi_{k} }}} .\)

Proposition 6.7

Let the spectra of \(\mathcal{H}_{Q}\) are denoted by \(0 = \eta_{1} < \eta_{2} \le \cdots \le \eta_{2m} .\) Then, \(\sum\nolimits_{j = 2}^{3m + 1} {\frac{1}{{\eta_{j} }}} = \frac{{ m\left( {49m^{2} + 42m + 2} \right)}}{{3 \left( {7m + 1} \right)}}.\)

Proof

Let \(\varphi \left( {\mathcal{H}_{Q} } \right) = x^{2m} + n_{1} x^{2m - 1} + \cdots + n_{2m - 2} x^{2} + n_{2m - 1} x = x\left( {x^{2m - 1} + n_{1} x^{2m - 2} + \cdots + n_{2m - 2} x + n_{2m - 1} } \right),\) where \(n_{2m - 1} \ne 0.\) Then, \(\eta_{2} ,\eta_{3} , \ldots ,\eta_{2m}\) are the roots of the following equation

$$ x^{2m - 1} + n_{1} x^{2m - 2} + \cdots + n_{2m - 2} x + n_{2m - 1} = 0. $$

That is to say, \(\frac{1}{{\eta_{2} }},{ }\frac{1}{{\eta_{3} }}, \ldots ,\frac{1}{{\eta_{2m} }}\) are the roots of \( n_{2m - 1} x^{2m - 1} + n_{2m - 2} x^{2m - 2} + \cdots + n_{1} x + 1 = 0.\)

From the Vieta’s Theorem, one has

$$ \mathop \sum \limits_{j = 2}^{3m + 1} \frac{1}{{\eta_{j} }} = - \frac{{n_{3m - 2} }}{{n_{3m} }}. $$
(6)

Putting Lemmas 6.4 and 6.5 into (6) yields \(\sum\nolimits_{j = 2}^{3m + 1} {\frac{1}{{\eta_{j} }}} = \frac{{ m\left( {49m^{2} + 42m + 2} \right)}}{{3 \left( {7m + 1} \right)}}\) as desired.

Proposition 6.8

Let the spectrums of \(\mathcal{H}_{R}\) are denoted by \(\xi_{1} ,\xi_{2} , \ldots ,\xi_{2m}\). Then,

$$ \mathop \sum \limits_{k = 1}^{2m + 1} \frac{1}{{\xi_{k} }} = \frac{{\left[ {192 + 143\sqrt 6 + 84\left( {11 + 4\sqrt 6 } \right)m} \right]\left( {\sqrt 3 + \sqrt 2 } \right)^{2m} + \left[ {192 - 143\sqrt 6 + 84\left( {11 - 4\sqrt 6 } \right)m} \right]\left( {\sqrt 3 - \sqrt 2 } \right)^{2m} }}{{16\left[ {\left( {24 + 11\sqrt 6 } \right)\left( {\sqrt 3 + \sqrt 2 } \right)^{2m} + \left( {24 - 11\sqrt 6 } \right)\left( {\sqrt 3 - \sqrt 2 } \right)^{2m} } \right]}}. $$

Proof

Let \(\varphi \left( {\mathcal{H}_{R} } \right) = x^{2m} + b_{1} x^{2m - 1} + \cdots + b_{2n - 1} x + b_{2m} ,\) where \(b_{2m} \ne 0\). Then, the roots of the following equation are \( \xi_{2} ,\xi_{3} , \ldots ,\xi ._{2m}\).

$$ x^{2m} + b_{1} x^{2m - 1} + \cdots + b_{2m - 1} x + b_{2m} = 0. $$

That is to say, \(\frac{1}{{\xi_{1} }},\frac{1}{{\xi_{2} }}, \ldots ,\frac{1}{{\xi_{{2{\text{m}}}} }}\) are the roots of:

$$ b_{2m} x^{2m} + b_{2m - 1} x^{2m - 1} + \cdots + b_{1} x + 1 = 0. $$

Be mindful the Vieta’s Theorem, there are

$$ \mathop \sum \limits_{k = 1}^{2m + 1} \frac{1}{{\xi_{k} }} = \frac{{b_{2m} }}{{b_{2m + 1} }} = \frac{{b_{2m} }}{{\det \mathcal{H}_{R} }}. $$
(7)

Putting Lemmas 6.1, 6.2 and 6.3 into (7) yields the required result.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaman, S., Mustafa, M., Ullah, A. et al. Study of mean-first-passage time and Kemeny’s constant of a random walk by normalized Laplacian matrices of a penta-chain network. Eur. Phys. J. Plus 138, 770 (2023). https://doi.org/10.1140/epjp/s13360-023-04390-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04390-7

Navigation