Skip to main content
Log in

Photonsphere, shadow, quasinormal modes, and greybody bounds of non-rotating Simpson–Visser black hole

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this manuscript, we study photonsphere, shadow, quasinormal modes, Hawking temperature, and greybody bounds of a non-rotating Simpson–Visser black hole which is a regular black hole. We observe that though the radius of the photonsphere does depend on the Simpson–Visser parameter \(\alpha \), the shadow radius is independent of it. The shadow radius is found to be equal to that for Schwarzschild black hole. We, then, study quasinormal frequencies of the Simpson–Visser black hole for scalar and electromagnetic perturbations with the help of 6th-order WKB method. We tabulate values of quasinormal frequencies for various values of \(\alpha \), angular momentum \(\ell \), and overtone number n. We also graphically show the dependence of real and imaginary parts of quasinormal frequency on \(\alpha \) and \(\ell \). Additionally, We study the convergence of the WKB method for various values of pair \((n,\ell )\). Finally, we shed light on the dependence of the Hawking temperature on the parameter \(\alpha \) and the dependence of greybody bounds on \(\alpha \) and \(\ell \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability Statement

We do not have any additional data to present.

References

  1. A. Einstein, Lens-like action of a star by the deviation of light in the gravitational field. Science 84, 506–507 (1936)

    Article  ADS  MATH  Google Scholar 

  2. P. Nicolini, A. Smailagic, E. Spallucci, Noncommutative geometry inspired Schwarzschild black hole. Phys. Lett. B 632, 547–551 (2006). arXiv:gr-qc/0510112

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. P. Nicolini, Noncommutative black holes, the final appeal to quantum gravity: a review. Int. J. Mod. Phys. A 24, 1229–1308 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. E. Spallucci, A. Smailagic, P. Nicolini, Non-commutative geometry inspired higher-dimensional charged black holes. Phys. Lett. B 670, 449–454 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. P. Nicolini, E. Spallucci, Noncommutative geometry inspired wormholes and dirty black holes. Class. Quant. Grav. 27, 015010 (2010)

    Article  ADS  MATH  Google Scholar 

  6. A.B. Balakin, A.E. Zayats, Non-minimal Wu-Yang monopole. Phys. Lett. B 644, 294–298 (2007). arXiv:gr-qc/0612019

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. A.B. Balakin, J.P.S. Lemos, A.E. Zayats, Magnetic black holes and monopoles in a nonminimal Einstein-Yang-Mills theory with a cosmological constant: exact solutions. Phys. Rev. D 93(8), 084004 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  8. Z. Roupas, Detectable universes inside regular black holes. Eur. Phys. J. C 82(3), 255 (2022)

    Article  ADS  Google Scholar 

  9. A. Bonanno, M. Reuter, Renormalization group improved black hole space-times. Phys. Rev. D 62, 043008 (2000)

    Article  ADS  Google Scholar 

  10. L. Modesto, Disappearance of black hole singularity in quantum gravity. Phys. Rev. D 70, 124009 (2004). arXiv:gr-qc/0407097

    Article  ADS  MathSciNet  Google Scholar 

  11. R. Gambini, J. Pullin, Black holes in loop quantum gravity: the complete space-time. Phys. Rev. Lett. 101, 161301 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  12. B. Koch, F. Saueressig, Black holes within asymptotic safety. Int. J. Mod. Phys. A 29(8), 1430011 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. A. Perez, Black holes in loop quantum gravity. Rept. Prog. Phys. 80(12), 126901 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  14. N. Bodendorfer, F.M. Mele, J. Münch, Mass and horizon Dirac observables in effective models of quantum black-to-white hole transition. Class. Quant. Grav. 38(9), 095002 (2021). arXiv:1912.00774 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. N. Bodendorfer, F.M. Mele, J. Münch, (b, v)-type variables for black to white hole transitions in effective loop quantum gravity. Phys. Lett. B 819, 136390 (2021). arXiv:1911.12646 [gr-qc]

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Bojowald, Black-hole models in loop quantum gravity. Universe 6(8), 125 (2020). arXiv:2009.13565 [gr-qc]

    Article  ADS  Google Scholar 

  17. S. Brahma, C.-Y. Chen, D.-H. Yeom, Testing loop quantum gravity from observational consequences of nonsingular rotating black holes. Phys. Rev. Lett. 126(18), 181301 (2021). arXiv:2012.08785 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  18. S. Ansoldi, Spherical black holes with regular center: a review of existing models including a recent realization with Gaussian sources, in Conference on Black Holes and Naked Singularities (2008). Preprint at arXiv:0802.0330 [gr-qc]

  19. J.M. Bardeen, Non-singular general-relativistic gravitational collapse, in Proceedings of GR5 URSS, Tbilisi, 174 (1968)

  20. I. Dymnikova, Vacuum nonsingular black hole. Gen. Relat. Gravit. 24, 235242 (1992)

    Article  MathSciNet  Google Scholar 

  21. J.P.S. Lemos, V.T. Zanchin, Regular black holes: electrically charged solutions, Reissner-Nordström outside a de sitter core. Phys. Rev. D 83, 124005 (2011)

    Article  ADS  Google Scholar 

  22. A. Kumar, S.G. Ghosh, S.D. Maharaj, Nonsingular black hole chemistry. Phys. Dark Univ. 30, 100634 (2020)

    Article  Google Scholar 

  23. A. Eichhorn, A. Held, Image features of spinning regular black holes based on a locality principle. Eur. Phys. J. C 81, 933 (2021)

    Article  ADS  MATH  Google Scholar 

  24. K. Akiyama et al., (Event Horizon Telescope), First M87 event horizon telescope results. I. The shadow of the supermassive black hole. Astrophys. J. Lett. 875, L1 (2019)

    Article  ADS  Google Scholar 

  25. K. Akiyama et al., (Event Horizon Telescope), First Sagittarius A* event horizon telescope results. I. The shadow of the supermassive black hole in the center of the milky way. Astrophys. J. Lett. 930, L12 (2022)

    Article  ADS  Google Scholar 

  26. J.M. Bardeen, W.H. Press, S.A. Teukolsky, Rotating black holes: locally nonrotating frames, energy extraction, and scalar synchrotron radiation. Astrophys. J. 178, 347–370 (1972)

    Article  ADS  Google Scholar 

  27. J.L. Synge, The escape of photons from gravitationally intense stars. Mon. Not. R. Astron. Soc. 131, 463–466 (1966)

    Article  ADS  Google Scholar 

  28. J.P. Luminet, Image of a spherical black hole with thin accretion disk. Astron. Astrophys. 75, 228–235 (1979)

    ADS  Google Scholar 

  29. R. Narayan, M.D. Johnson, C.F. Gammie, The shadow of a spherically accreting black hole. Astrophys. J. 885, L33 (2019)

    Article  ADS  Google Scholar 

  30. Y. Guo, Y.-G. Miao, Charged black-bounce spacetimes: photon rings, shadows and observational appearances. Nucl. Phys. B 983, 115938 (2022). arXiv:2112.01747 [gr-qc]

    Article  MathSciNet  MATH  Google Scholar 

  31. R.C. Pantig, P.K. Yu, E.T. Rodulfo, A. Övgün, Shadow and weak deflection angle of extended uncertainty principle black hole surrounded with dark matter. Ann. Phys. 436, 168722 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  32. R.A. Konoplya, A. Zhidenko, Solutions of the Einstein equations for a black hole surrounded by a galactic halo. Astrophys. J. 933, 166 (2022)

    Article  ADS  Google Scholar 

  33. R.A. Konoplya, Shadow of a black hole surrounded by dark matter. Phys. Lett. B 795, 1–6 (2019). arXiv:1905.00064 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. X. Zhaoyi, X. Hou, X. Gong, J. Wang, Black hole space-time in dark matter halo. JCAP 09, 038 (2018)

    MathSciNet  MATH  Google Scholar 

  35. X. Zhaoyi, X. Gong, S.-N. Zhang, Black hole immersed dark matter halo. Phys. Rev. D 101, 024029 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  36. R.C. Pantig, E.T. Rodulfo, Rotating dirty black hole and its shadow. Chin. J. Phys. 68, 236–257 (2020)

    Article  MathSciNet  Google Scholar 

  37. W. Javed, H. Irshad, R.C. Pantig, A. Övgün, Weak deflection angle by Kalb-Ramond traversable wormhole in plasma and dark matter mediums. Universe (2022). https://doi.org/10.3390/universe8110599

    Article  Google Scholar 

  38. W. Javed, S. Riaz, R.C. Pantig, A. Övgün, Weak gravitational lensing in dark matter and plasma mediums for wormhole-like static aether solution. Eur. Phys. J. C 82, 1057 (2022)

    Article  ADS  Google Scholar 

  39. K. Jusufi, M. Jamil, T. Zhu, Shadows of Sgr \(A^*\) black hole surrounded by superfluid dark matter halo. Eur. Phys. J. C 80, 354 (2020). arXiv:2005.05299 [gr-qc]

    Article  ADS  Google Scholar 

  40. S. Nampalliwar, S. Kumar, K. Jusufi, W. Qiang, M. Jamil, P. Salucci, Modeling the Sgr A* Black Hole Immersed in a Dark Matter Spike. Astrophys. J. 916, 116 (2021)

    Article  ADS  Google Scholar 

  41. C.V. Vishveshwara, Stability of the Schwarzschild metric. Phys. Rev. D 1, 2870 (1970)

    Article  ADS  Google Scholar 

  42. W.H. Press, Long wave trains of gravitational waves from a vibrating black hole. ApJ 170, L105 (1971)

    Article  ADS  Google Scholar 

  43. S. Chandrasekhar, S. Detweiler, The quasi-normal modes of the Schwarzschild black hole. Proc. R. Soc. Lond. A 344, 441 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  44. C. Ma, Y. Gui, W. Wang, F. Wang, Massive scalar field quasinormal modes of a Schwarzschild black hole surrounded by quintessence. Cent. Eur. J. Phys. 6, 194 (2008). [arXiv:gr-qc/0611146]

    Google Scholar 

  45. D.J. Gogoi, U.D. Goswami, A new f(R) gravity model and properties of gravitational waves in it. Eur. Phys. J. C 80, 1101 (2020)

    Article  ADS  Google Scholar 

  46. D.J. Gogoi, U.D. Goswami, Gravitational waves in f (R) gravity power law model. Indian J. Phys. 96, 637 (2022)

    Article  ADS  Google Scholar 

  47. D. Liang, Y. Gong, S. Hou, Y. Liu, Polarizations of gravitational waves in f(R) gravity. Phys. Rev. D 95, 104034 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  48. R. Oliveira, D.M. Dantas, C.A.S. Almeida, Quasinormal frequencies for a black hole in a bumblebee gravity. EPL 135, 10003 (2021)

    Article  ADS  Google Scholar 

  49. D.J. Gogoi, U.D. Goswami, Quasinormal modes of black holes with non-linear-electrodynamic sources in Rastall gravity. Phys. Dark Univ. 33, 100860 (2021)

    Article  Google Scholar 

  50. J.P.M. Graça, I.P. Lobo, Scalar QNMs for higher dimensional black holes surrounded by quintessence in Rastall gravity. Eur. Phys. J. C 78, 101 (2018)

    Article  ADS  Google Scholar 

  51. Y. Zhang, Y.X. Gui, F. Li, Quasinormal modes of a Schwarzschild black hole surrounded by quintessence: electromagnetic perturbations. Gen. Relativ. Gravit. 39, 1003 (2007). [arXiv:gr-qc/0612010]

    Article  ADS  MATH  Google Scholar 

  52. M. Bouhmadi-L’opez, S. Brahma, C.-Y. Chen, P. Chen, D. Yeom, A consistent model of non-singular Schwarzschild black hole in loop quantum gravity and its quasinormal modes. J. Cosmol. Astropart. Phys. 07, 066 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. J. Liang, Quasinormal modes of the Schwarzschild black hole surrounded by the quintessence field in Rastall gravity. Commun. Theor. Phys. 70(695), 15 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  54. Y. Hu, C.-Y. Shao, Y.-J. Tan, C.-G. Shao, K. Lin, W.-L. Qian, Scalar quasinormal modes of nonlinear charged black holes in Rastall gravity. EPL 128, 50006 (2020)

    Article  MATH  Google Scholar 

  55. S. Giri, H. Nandan, L.K. Joshi, S.D. Maharaj, Geodesic stability and quasinormal modes of non-commutative Schwarzschild black hole employing Lyapunov exponent. Eur. Phys. J. Plus 137, 181 (2022)

    Article  Google Scholar 

  56. D.J. Gogoi, R. Karmakar, U.D. Goswami, Quasinormal modes of non-linearly charged black holes surrounded by a cloud of strings in Rastall gravity (2021). Preprint at arXiv:2111.00854

  57. A. Övgün, İ Sakallı, J. Saavedra, Quasinormal modes of a Schwarzschild Black hole immersed in an electromagnetic universe. Chin. Phys. C 42(10), 105102 (2018)

    Article  ADS  Google Scholar 

  58. A. Rincon, P.A. Gonzalez, G. Panotopoulos, J. Saavedra, Y. Vasquez, Quasinormal modes for a non-minimally coupled scalar field in a five-dimensional Einstein-Power- Maxwell background. Eur. Phys. J. Plus 137(11), 1278 (2022)

    Article  Google Scholar 

  59. P.A. González, Á. Rincoń, J. Saavedra, Y. Vásquez, Superradiant instability and charged scalar quasinormal modes for (2+1)- dimensional Coulomb-like AdS black holes from nonlinear electrodynamics. Phys. Rev. D 104(8), 084047 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  60. G. Panotopoulos, Á. Rincoń, Quasinormal spectra of scale-dependent Schwarzschild-de Sitter black holes. Phys. Dark Univ. 31, 100743 (2021)

    Article  Google Scholar 

  61. R.G. Daghigh, M.D. Green, Validity of the WKB approximation in calculating the asymptotic quasinormal modes of black holes. Phys. Rev. D 85, 127501 (2012). [arXiv:1112.5397 [gr-qc]]

    Article  ADS  Google Scholar 

  62. R.G. Daghigh, M.D. Green, Highly real, highly damped, and other asymptotic quasinormal modes of Schwarzschild-Anti De Sitter black holes. Class. Quant. Grav. 26, 125017 (2009)

    Article  ADS  MATH  Google Scholar 

  63. A. Zhidenko, Quasinormal modes of Schwarzschild de Sitter black holes. Class. Quantum Grav. 21, 273–280 (2004)

    Article  ADS  MATH  Google Scholar 

  64. A. Zhidenko, Quasi-normal modes of the scalar hairy black hole. Class. Quantum Grav. 23, 3155–3164 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. R.A. Konoplya, A. Zhidenko, Quasinormal modes of black holes: from astrophysics to string theory. Rev. Mod. Phys. 83, 793–836 (2011). [arXiv:1102.4014 [gr-qc]]

    Article  ADS  Google Scholar 

  66. Y. Hatsuda, Quasinormal modes of black holes and Borel summation. Phys. Rev. D 101(2), 024008 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  67. D.S. Eniceicu, M. Reece, Quasinormal modes of charged fields in Reissner-Nordström backgrounds by Borel-Padé summation of Bender-Wu series. Phys. Rev. D 102(4), 044015 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  68. S. Lepe, J. Saavedra, Quasinormal modes, superradiance and area spectrum for 2+1 acoustic black holes. Phys. Lett. B 617, 174–181 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. M. Chabab, H. El Moumni, S. Iraoui, K. Masmar, Phase transition of charged-AdS black holes and quasinormal modes: a time domain analysis. Astrophys. Space Sci. 362(10), 192 (2017)

    Article  ADS  Google Scholar 

  70. M. Chabab, H. El Moumni, S. Iraoui, K. Masmar, Behavior of quasinormal modes and high dimension RN-AdS black hole phase transition. Eur. Phys. J. C 76(12), 676 (2016)

    Article  ADS  Google Scholar 

  71. M. Okyay, A. Övgün, Nonlinear electrodynamics effects on the black hole shadow, deflection angle, quasinormal modes and greybody factors. J. Cosmol. Astropart. Phys. 2022, 009 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  72. A. Övgün, K. Jusufi, Quasinormal modes and greybody factors of f(R) Gravity minimally coupled to a cloud of strings in 2 + 1 dimensions. Ann. Phys. 395, 138 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  73. R.C. Pantig, L. Mastrototaro, G. Lambiase, A. Övgün, Shadow, lensing, quasinormal modes, greybody bounds and neutrino propagation by dyonic ModMax black holes. Eur. Phys. J. C 82(12), 1155 (2022)

    Article  ADS  Google Scholar 

  74. Y. Yang, D. Liu, A. Övgün, Z. W. Long, Z. Xu, Quasinormal modes of Kerr-like black bounce spacetime, [arXiv:2205.07530 [gr-qc]]

  75. Y. Yang, D. Liu, A. Övgün, Z. W. Long, Z. Xu, Probing hairy black holes caused by gravitational decoupling using quasinormal

  76. S.W. Hawking, Commun. Math. Phys. 43, 199 (1975). (Erratum: Commun.Math.Phys. 46, 206 (1976))

    Article  ADS  Google Scholar 

  77. H. Hassanabadi, W.S. Chung, B.C. Lütfüoğlu, E. Maghsoodi, Effects of a new extended uncertainty principle on Schwarzschild and Reissner-Nordström black holes thermodynamics. Int. J. Mod. Phys. A 36, 2150036 (2021)

    Article  ADS  Google Scholar 

  78. S. Hassanabadi, J. Kříž, W.S. Chung, B.C. Lütfüoğlu, E. Maghsoodi, H. Hassanabadi, Thermodynamics of the Schwarzschild and Reissner-Nordström black holes under higher-order generalized uncertainty principle. Eur. Phys. J. Plus 136, 918 (2021)

    Article  Google Scholar 

  79. H. Chen, B.C. Lütfüoğlu, H. Hassanabadi, Z.-W. Long, Thermodynamics of the Reissner-Nordström black hole with quintessence matter on the EGUP framework. Phys. Lett. B 827, 136994 (2022)

    Article  MATH  Google Scholar 

  80. Y.P. Zhang, S.W. Wei, Y.X. Liu, Topological approach to derive the global Hawking temperature of (massive) BTZ black hole. Phys. Lett. B 810, 135788 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  81. A. Övgün, I. Sakalli, Hawking radiation via gaussbonnet theorem. Ann. Phys. 413, 168071 (2020)

    Article  MATH  Google Scholar 

  82. S.I. Kruglov, Magnetically charged black hole in framework of nonlinear electrodynamics model. Int. J. Mod. Phys. A 33, 1850023 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  83. S. Fernando, Greybody factors of charged dilaton black holes in 2 + 1 dimensions. Gen. Relativ. Gravit. 37, 461481 (2005)

    Article  MathSciNet  Google Scholar 

  84. W. Kim, J.J. Oh, Greybody factor and hawking radiation of charged dilatonic black holes. J. Korean Phys. Soc. 52, 986–991 (2008)

    Article  ADS  Google Scholar 

  85. J. Escobedo, Greybody factors, Master’s Thesis, Uni. of Amsterdam 6 (2008)

  86. M.K. Parikh, W. Frank, Hawking radiation as tunneling. Phys. Rev. Lett. 85, 5042–5045 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  87. C.H. Fleming, Hawking radiation as tunneling, Uni. of Maryland. Dept. of Phys., Tech. Rep. (2005)

  88. M. Visser, Some general bounds for one-dimensional scattering. Phys. Rev. A 59, 427–438 (1999)

    Article  ADS  Google Scholar 

  89. P. Boonserm, M. Visser, Bounding the bogoliubov coefficients. Ann. Phys. 323, 2779–2798 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  90. W. Javed, I. Hussain, A. Övgün, Weak deflection angle of Kazakov Solodukhin black hole in plasma medium using Gauss Bonnet theorem and its greybody bonding. Eur. Phys. J. Plus 137, 1–4 (2022)

    Article  Google Scholar 

  91. A. Simpson, M. Visser, JCAP 02, 042 (2019)

    Article  ADS  Google Scholar 

  92. K.A. Bronnikov, R.K. Walia, Field sources for Simpson-Visser spacetimes. Phys. Rev. D 105, 044039 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  93. B.F. Schutz, C.M. Will, Black hole normal modes: a semianalytic approach. Astrophys. J. Lett. 291, L33–L36 (1985)

    Article  ADS  Google Scholar 

  94. S. Iyer, C.M. Will, Black hole normal modes: a WKB approach. 1. Foundations and application of a higher order WKB analysis of potential barrier scattering. Phys. Rev. D 35, 3621 (1987)

    Article  ADS  Google Scholar 

  95. S. Iyer, Black hole normal modes: a WKB approach. 2. Schwarzschild black holes. Phys. Rev. D 35, 3632 (1987)

    Article  ADS  Google Scholar 

  96. R.A. Konoplya, Quasinormal behavior of the d-dimensional Schwarzschild black hole and higher order WKB approach Phys. Rev. D 68, 024018 (2003)

    Article  MathSciNet  Google Scholar 

  97. J. Matyjasek, M. Opala, Quasinormal modes of black holes: the improved semianalytic approach. Phys. Rev. D 96, 024011 (2017)

    Article  ADS  Google Scholar 

  98. R.A. Konoplya, A. Zhidenko, A.F. Zinhailo, Higher order WKB formula for quasinormal modes and grey-body factors: recipes for quick and accurate calculations. Class. Quantum Gravity 36, 155002 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  99. K. Destounis, R.P. Macedo, E. Berti, V. Cardoso, J.L. Jaramillo, Pseudospectrum of Reissner-Nordström black holes: quasinormal mode instability and universality. [arXiv:2107.09673 [gr-qc]]

  100. J.D. Bekenstein black hole thermodynamics, Phys. Today 24 (1980)

  101. C. Kiefer. Classical and Quantum black holes (1999)

  102. P. Boonserm, Rigorous bounds on transmission, reflection and bogoliubov coefficients, Ph.D. thesis, Victoria Uni. Wellington (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohan Kumar Jha.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jha, S.K. Photonsphere, shadow, quasinormal modes, and greybody bounds of non-rotating Simpson–Visser black hole. Eur. Phys. J. Plus 138, 757 (2023). https://doi.org/10.1140/epjp/s13360-023-04384-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04384-5

Navigation