Skip to main content
Log in

Kinetic study on sandwiched trilayer with square lattices in the form of mixed spin\(-(1/\mathrm{2,1},1/2)\)

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Magnetic properties of the kinetic Ising system on sandwiched trilayer with square lattices are studied employing the mean-field theory based on Glauber-type stochastic dynamics. The top and bottom layers of sandwiched trilayer are composed of S or α-spins (S = α =  ± 1/2) , while the middle layer is composed of σ-spins (σ =  ± 1). First, we investigate the time-dependence behavior of order parameters to obtain the kinetic system's phases. After that, the thermal behavior of dynamic sublattice magnetizations is studied to obtain the dynamic phase transitions (DPTs) and to determine the type of DPTs. The kinetic system shows both first- and second-order phase transitions. In the plane of the magnetic field's amplitude and temperature, we present the dynamic phase diagrams. The kinetic system shows rich dynamic phase diagrams, which are strongly dependent on Hamiltonian parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included in the article.

References

  1. B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials, 2nd edn. (Wiley, New York, 2008)

    Book  Google Scholar 

  2. G. Connell, R. Allen, M. Mansuripur, Magneto-optical properties of amorphous terbium–iron alloys. J. Appl. Phys. 53, 7759–7762 (1982)

    Article  ADS  Google Scholar 

  3. M.H. Phan, S.C. Yu, Review of the magnetocaloric effect in manganite materials. J. Magn. Magn. Mater. 308, 325 (2007)

    Article  ADS  Google Scholar 

  4. R.E. Camley, J. Barnas, Theory of giant magnetoresistance effects in magnetic layered structures with antiferromagnetic coupling. Phys. Rev. Lett. 63, 664–667 (1989)

    Article  ADS  Google Scholar 

  5. S.K. Sajid, M. Acharyya, Phase Transitions 93, 62 (2020)

    Article  Google Scholar 

  6. M. Stier, W. Nolting, Carrier-mediated interlayer exchange, ground-state phase diagrams, and transition temperatures of magnetic thin films. Phys. Rev. B. 84, 094417 (2011)

    Article  ADS  Google Scholar 

  7. C. Smits, A. Filip, H. Swagten, B. Koopmans, W.D. Jonge, M. Chernyshova, L. Kowalczyk, K. Grasza, A. Szczerbakow, T. Story, W. Palosz, A.Y. Sipatov, Antiferromagnetic interlayer exchange coupling in all-semiconducting EuS/PbS/ EuS trilayers. Phys. Rev. B. 69, 224410 (2004)

    Article  ADS  Google Scholar 

  8. H. Kepa, J. Kutner-Pielaszek, J. Blinowski, A. Twardowski, C.F. Majkrzak, T. Story, P. Kacman, R.R. Gaazka, K. Ha, H.J.M. Swagten, W.J.M. de Jonge, A.Y. Sipatov, V. Volobuev, T.M. Giebultowicz, Antiferromagnetic interlayer coupling in ferromagnetic semiconductor superlattices. Euro. Phys. Lett. 56, 54–60 (2001)

    Article  ADS  Google Scholar 

  9. G. Chern, L. Horng, W.K. Shieh, T.C. Wu, Antiparallel state, compensation point, and magnetic phase diagram of Fe3O4/Mn3O4 superlattices. Phys. Rev. B. 63, 094421 (2001)

    Article  ADS  Google Scholar 

  10. R. Baxter, Exactly Solved Models in Statistical Mechanics, 9th edn. (London, Academic Press, 1982)

    MATH  Google Scholar 

  11. R. Masrour, L. Bahmad, A. Benyoussef, J. Magn. Magn. Mater. 324, 3991 (2012)

    Article  ADS  Google Scholar 

  12. D. Lv, W. Wang, J.P. Liu, D.Q. Guo, S.X. Li, J. Magn. Magn. Mater. 465, 348 (2018)

    Article  ADS  Google Scholar 

  13. S.-C. Fang, X.-J. Zheng, H.-Q. Lin, Z.-B. Huang, J. Phys.: Condens. Matter 33, 025601 (2020)

    ADS  Google Scholar 

  14. E. Kantar, Mod. Phys. Lett. B 30, 1650295 (2016)

    Article  ADS  Google Scholar 

  15. T. Kaneyoshi, J. Phys. Chem. Solids 119, 202 (2018)

    Article  ADS  Google Scholar 

  16. M. Karimoul, R.A. Yessoufou, G.D. Ngantso, F. Hontinfinde, A. Benyoussef, J. Super. Nov. Magn. 32, 1769 (2019)

    Article  Google Scholar 

  17. M. Batı, Mod. Phys. Lett. B 30, 1950369 (2019)

    Article  MathSciNet  Google Scholar 

  18. M. Ertaş, M. Batı, U. Temizer, Chin. J. Phys. 56, 807 (2018)

    Article  Google Scholar 

  19. H.-J. Wu, W. Wang, D. Lv, C.-L. Chang, B.-C. Li, M. Tian, J. Magn. Magn. Mater. 515, 167306 (2020)

    Article  Google Scholar 

  20. J. Camarero, Y. Pennec, J. Vogel, M. Bonfim, S. Pizzini, F. Ernult, F. Fettar, F. Garcia, F. Lanc-on, L. Billard, B. Dieny, A. Tagliaferri, N.B. Brookes, Phys. Rev. Lett. 91, 027201 (2003)

    Article  ADS  Google Scholar 

  21. S.K. Chen, F.T. Yuan, W.M. Liao, C.W. Hsu, L. Horng, J. Magn. Magn. Mater. 303, e251 (2006)

    Article  ADS  Google Scholar 

  22. R. Steiner, P. Ziemann, Phys. Rev. B 74, 094504 (2006)

    Article  ADS  Google Scholar 

  23. S.J. Yuan, K. Xu, L.M. Yu, S.X. Cao, C. Jing, J.C. Zhang, J. Appl. Phys. 101, 113915 (2007)

    Article  ADS  Google Scholar 

  24. A. Aziz, S.J. Bending, H. Roberts, S. Crampin, P.J. Heard, C.H. Marrows, J. Appl. Phys. 98, 124102 (2005)

    Article  ADS  Google Scholar 

  25. G. Wiatrowski, D. Baldomi, K. Warda, M. Pereiro, L. Wojtczak , J.E. Arias Volume 277 (2004) 285.

  26. E. Albayrak, F. Ak, Physica A 389, 5677–5688 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  27. E. Albayrak, F. Ak, J. Magn. Magn. Mater. 322, 3281 (2010)

    Article  ADS  Google Scholar 

  28. E. Albayrak, F. Ak, Physica B 407, 2642 (2012)

    Article  ADS  Google Scholar 

  29. M. Gharaibeh, A. Obeidat, M.-K. Qaseer, and M. Badarneh Physica A 550, 124147 (2020)

    Article  Google Scholar 

  30. L. Sun, D. Lv, W. Wang, Z. Gao, B.-C. Li, Phys. Sci. 96, 075809 (2021)

    Article  ADS  Google Scholar 

  31. Y. An, W. Wang, L. Sun, B.-C. Li, Micro Nanostructures 171, 207429 (2022)

    Article  Google Scholar 

  32. A. Al-Qawasmeh, M. Badarneh, A. Obeidat, M. Gharaibeh, Physica B 643, 414170 (2022)

    Article  Google Scholar 

  33. A. Boubekri, Z. Elmaddahi, A. Farchakh, M. El Hafidi, Physica B 626, 413526 (2022)

    Article  Google Scholar 

  34. H. Fujisaka, H. Tutu, P.A. Rikvold, Phys. Rev. E 63, 036109 (2001)

    Article  ADS  Google Scholar 

  35. E. Kantar, M. Ertaş, Phase Transitions 91, 370 (2018)

    Article  Google Scholar 

  36. M. Ertaş, B. Deviren, Eur. Phys. J. Plus 137, 1031 (2022)

    Article  Google Scholar 

  37. M. Ertaş, U. Temizer, Eur. Phys. J. Plus 137, 1202 (2022)

    Article  Google Scholar 

  38. M. Batı, M. Ertaş, Physica A 573, 125938 (2021)

    Article  Google Scholar 

  39. M. Batı, M. Ertaş, Eur. Phys. J. Plus 136, 20 (2021)

    Article  Google Scholar 

  40. M. Batı, M. Ertaş, Superlattices Microstruct. 98, 259 (2016)

    Article  ADS  Google Scholar 

  41. M. Ertaş, M. Batı, Chin. J. Phys. 66, 724 (2020)

    Article  Google Scholar 

  42. T.W.B. Kibble, Phys. Rep. 67, 183 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  43. J.S. Suen, J.L. Erskine, Phys. Rev. Lett. 78, 3567 (1997)

    Article  ADS  Google Scholar 

  44. D.T. Robb, Y.H. Xu, O. Hellwig, J. McCord, A. Berger, M.A. Novotny, P.A. Rikvold, Phys. Rev. B 78, 134422 (2008)

    Article  ADS  Google Scholar 

  45. K. Kanuga, M. Cakmak, Polymer 48, 7176 (2007)

    Article  Google Scholar 

  46. I.J.L. Diaz, N.S. Branco, Physica A 540, 123014 (2020)

    Article  MathSciNet  Google Scholar 

  47. K. Szałowski, T. Balcerzak, J. Phys.: Condens. Matter 26, 386003 (2014)

    Google Scholar 

  48. M. Acharyya, Superlattices Micro. 147, 106648 (2020)

    Article  Google Scholar 

  49. K. Chakrabarti, M. Acharyya, Rev. Mod. Phys. 71, 847 (1999)

    Article  ADS  Google Scholar 

  50. A. Forooghi, S. Rezaey, S.M. Haghighi, A.M. Zenkour, Eng. Comput. 38, 2953 (2022)

    Article  Google Scholar 

  51. A. Forooghi, N. Fallahi, A. Alibeigloo, H. Forooghi, S. Rezaey, Mech. Based Des. Struct. Mach. (2022). https://doi.org/10.1080/15397734.2022.2094407

    Article  Google Scholar 

  52. A. Forooghi, A. Alibeigloo, Waves Random Complex Media (2022). https://doi.org/10.1080/17455030.2022.2037784

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ertaş.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozan, A., Ertaş, M. Kinetic study on sandwiched trilayer with square lattices in the form of mixed spin\(-(1/\mathrm{2,1},1/2)\). Eur. Phys. J. Plus 138, 727 (2023). https://doi.org/10.1140/epjp/s13360-023-04370-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04370-x

Navigation