Skip to main content
Log in

A new parametrization for bulk viscosity cosmology as extension of the \(\Lambda \)CDM model

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Bulk viscosity in cold dark matter is an appealing feature that introduces distinctive phenomenological effects in the cosmological setting as compared to the \(\Lambda \)CDM model. Under this view, we propose a general parametrization of the bulk viscosity of the form \(\xi \sim H^{1-2s} \rho _{m}^{s}\), Some advantages of this novel parametrization are: first, it allows to write the resulting equations of cosmological evolution in the form of an autonomous system for any value of s, so a general treatment of the fixed points and stability can be done, and second, the bulk viscosity effect is consistently handled so that it naturally turns off when matter density vanishes. As a main result we find, based on detailed dynamical system analysis, one-parameter family of de Sitter-like asymptotic solutions with non-vanishing bulk viscosity coefficient during different cosmological periods. Numerical computations are performed jointly along with analytical phase space analysis in order to assess more quantitatively the bulk viscosity effect on the cosmological background evolution. Finally, as a first contact with observation we derive constraints on the free parameters of some bulk viscosity models with specific s-exponents from Supernovae Ia and observations of the Hubble parameter, by performing a Bayesian statistical analysis thought the Markov Chain Monte Carlo method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

No Data associated in the manuscript.

Notes

  1. It does not mean however that the cosmological constant evolves itself since the condition \({\dot{\rho }}_{\Lambda }=0\) is preserved at any time.

  2. Notice however that all components are (minimally) coupled to gravity whereby the latter acts as a messenger between them. This is an indirect way where the bulk viscosity effects may be present in different cosmological stages.

  3. Another physical interpretation can be given in terms of an effective pressure for DE that arises due to the contribution of the bulk viscosity pressure in the acceleration equation Eqn. (3). Accordingly, deviation of \(\omega _{\textrm{DE}}=-1\) is possible, leading to an artificial phantom scenario.

  4. In the extreme case of large bulk viscosity values, which is achieved for large negative values of s, the presence of dark energy is not required to accelerate the expansion. This physical situation corresponds indeed to an unified dark fluid scenario, and it is another natural convergence of this viscous model.

References

  1. S. Perlmutter et al., Astrophys. J. 517, 565 (1999). https://doi.org/10.1086/307221. arXiv:astro-ph/9812133

    Article  ADS  Google Scholar 

  2. N. Aghanim et al. (Planck), Astron. Astrophys. 641, A6 (2020), [Erratum: Astron.Astrophys. 652, C4 (2021)], https://doi.org/10.1051/0004-6361/201833910arXiv:1807.06209 [astro-ph.CO]

  3. G. Hinshaw et al., WMAP. Astrophys. J. Suppl. 208, 19 (2013). https://doi.org/10.1088/0067-0049/208/2/19. arXiv:1212.5226 [astro-ph.CO]

    Article  ADS  Google Scholar 

  4. S. Alam et al., Mon. Not. Roy. Astron. Soc. 470, 2617 (2017). https://doi.org/10.1093/mnras/stx721. arXiv:1607.03155 [astro-ph.CO]

    Article  ADS  Google Scholar 

  5. S. Cao, J. Ryan, B. Ratra, Mon. Not. Roy. Astron. Soc. 504, 300 (2021). https://doi.org/10.1093/mnras/stab942. arXiv:2101.08817 [astro-ph.CO]

    Article  ADS  Google Scholar 

  6. A.G. Riess, S. Casertano, W. Yuan, L.M. Macri, D. Scolnic, Astrophys. J. 876, 85 (2019). https://doi.org/10.3847/1538-4357/ab1422. arXiv:1903.07603 [astro-ph.CO]

    Article  ADS  Google Scholar 

  7. S. Anand, P. Chaubal, A. Mazumdar, S. Mohanty, JCAP 11, 005 (2017). https://doi.org/10.1088/1475-7516/2017/11/005. arXiv:1708.07030 [astro-ph.CO]

    Article  ADS  Google Scholar 

  8. M. Raveri, Phys. Rev. D 93, 043522 (2016). https://doi.org/10.1103/PhysRevD.93.043522. arXiv:1510.00688 [astro-ph.CO]

    Article  ADS  Google Scholar 

  9. J.D. Bowman, A.E.E. Rogers, R.A. Monsalve, T.J. Mozdzen, N. Mahesh, Nature 555, 67 (2018). https://doi.org/10.1038/nature25792. arXiv:1810.05912 [astro-ph.CO]

    Article  ADS  Google Scholar 

  10. E. Elizalde, M. Khurshudyan, S.D. Odintsov, R. Myrzakulov, Phys. Rev. D 102, 123501 (2020). https://doi.org/10.1103/PhysRevD.102.123501. arXiv:2006.01879 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  11. J.R. Wilson, G.J. Mathews, G.M. Fuller, Phys. Rev. D 75, 043521 (2007). https://doi.org/10.1103/PhysRevD.75.043521. arXiv:astro-ph/0609687

    Article  ADS  Google Scholar 

  12. B.D. Normann, I.H. Brevik, Mod. Phys. Lett. A 36, 2150198 (2021). https://doi.org/10.1142/S0217732321501984. arXiv:2107.13533 [gr-qc]

    Article  ADS  Google Scholar 

  13. J.R. Bhatt, A.K. Mishra, A.C. Nayak, Phys. Rev. D 100, 063539 (2019). https://doi.org/10.1103/PhysRevD.100.063539. arXiv:1901.08451 [astro-ph.CO]

    Article  ADS  Google Scholar 

  14. M. Cruz, N. Cruz, S. Lepe, Phys. Rev. D 96, 124020 (2017). https://doi.org/10.1103/PhysRevD.96.124020. arXiv:1710.02607 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  15. J.C. Fabris, S.V.B. Goncalves, R. de Sa Ribeiro, Gen. Rel. Grav 38, 495 (2006). https://doi.org/10.1007/s10714-006-0236-y. arXiv:astro-ph/0503362

  16. B. Li, J.D. Barrow, Phys. Rev. D 79, 103521 (2009). https://doi.org/10.1103/PhysRevD.79.103521. arXiv:0902.3163 [gr-qc]

    Article  ADS  Google Scholar 

  17. W.S. Hipolito-Ricaldi, H.E.S. Velten, W. Zimdahl, Phys. Rev. D 82, 063507 (2010). https://doi.org/10.1103/PhysRevD.82.063507. arXiv:1007.0675 [astro-ph.CO]

    Article  ADS  Google Scholar 

  18. A. Avelino, U. Nucamendi, JCAP 04, 006 (2009). https://doi.org/10.1088/1475-7516/2009/04/006. arXiv:0811.3253 [gr-qc]

    Article  ADS  Google Scholar 

  19. A. Avelino, U. Nucamendi, JCAP 08, 009 (2010). https://doi.org/10.1088/1475-7516/2010/08/009. arXiv:1002.3605 [gr-qc]

    Article  ADS  Google Scholar 

  20. A. Sasidharan, T.K. Mathew, Eur. Phys. J. C 75, 348 (2015). https://doi.org/10.1140/epjc/s10052-015-3567-6. arXiv:1411.5154 [gr-qc]

    Article  ADS  Google Scholar 

  21. A. Sasidharan, T.K. Mathew, JHEP 06, 138 (2016). https://doi.org/10.1007/JHEP06(2016)138. arXiv:1511.05287 [gr-qc]

    Article  ADS  Google Scholar 

  22. N.D.J. Mohan, A. Sasidharan, T.K. Mathew, Eur. Phys. J. C 77, 849 (2017). https://doi.org/10.1140/epjc/s10052-017-5428-y. arXiv:1708.02437 [gr-qc]

    Article  ADS  Google Scholar 

  23. N. Cruz, E. González, G. Palma, Gen. Rel. Grav. 52, 62 (2020). https://doi.org/10.1007/s10714-020-02712-z. arXiv:1812.05009 [gr-qc]

    Article  ADS  Google Scholar 

  24. N. Cruz, E. González, G. Palma, Mod. Phys. Lett. A 36, 2150032 (2021). https://doi.org/10.1142/S0217732321500322. arXiv:1906.04570 [gr-qc]

    Article  ADS  Google Scholar 

  25. A. Hernández-Almada, M.A. García-Aspeitia, M.A. Rodríguez-Meza, V. Motta, Eur. Phys. J. C 81, 295 (2021). https://doi.org/10.1140/epjc/s10052-021-09104-w. arXiv:2103.16733 [astro-ph.CO]

    Article  ADS  Google Scholar 

  26. T. Padmanabhan, S.M. Chitre, Phys. Lett. A 120, 433 (1987). https://doi.org/10.1016/0375-9601(87)90104-6

    Article  ADS  Google Scholar 

  27. W. Zimdahl, D.J. Schwarz, A.B. Balakin, D. Pavon, Phys. Rev. D 64, 063501 (2001). https://doi.org/10.1103/PhysRevd.64.063501. arXiv:astro-ph/0009353

    Article  ADS  Google Scholar 

  28. L.D. Landau, E.M. Lifshitz, Fluid Mech. 6, 523–529 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  29. W. Zimdahl, D. Pavón, Int. J. Mod. Phys. D 3, 327 (1994). https://doi.org/10.1142/S0218271894000563

    Article  ADS  Google Scholar 

  30. M.A. Schweizer, Astrophys. J 258, 798 (1982). https://doi.org/10.1086/160127

    Article  ADS  Google Scholar 

  31. N. Udey, W. Israel, Mon. Not. Roy. Astron. Soc 199, 1137 (1982). https://doi.org/10.1093/mnras/199.4.1137

    Article  ADS  Google Scholar 

  32. W. Zimdahl, Mon. Not. Roy. Astron. Soc. 280, 1239 (1996). https://doi.org/10.1093/mnras/280.4.1239. arXiv:astro-ph/9602128

    Article  ADS  Google Scholar 

  33. R. Foot, S. Vagnozzi, Phys. Rev. D 91, 023512 (2015). https://doi.org/10.1103/PhysRevD.91.023512. arXiv:1409.7174 [hep-ph]

    Article  ADS  Google Scholar 

  34. R. Foot, S. Vagnozzi, JCAP 07, 013 (2016). https://doi.org/10.1088/1475-7516/2016/07/013. arXiv:1602.02467 [astro-ph.CO]

    Article  ADS  Google Scholar 

  35. D. Blas, S. Floerchinger, M. Garny, N. Tetradis, U.A. Wiedemann, JCAP 11, 049 (2015). https://doi.org/10.1088/1475-7516/2015/11/049. arXiv:1507.06665 [astro-ph.CO]

    Article  ADS  Google Scholar 

  36. H. Velten, T.R.P. Caramês, J.C. Fabris, L. Casarini, R.C. Batista, Phys. Rev. D 90, 123526 (2014). https://doi.org/10.1103/PhysRevD.90.123526. arXiv:1410.3066 [astro-ph.CO]

    Article  ADS  Google Scholar 

  37. C.M.S. Barbosa, H. Velten, J.C. Fabris, R.O. Ramos, Phys. Rev. D 96, 023527 (2017). https://doi.org/10.1103/PhysRevD.96.023527. arXiv:1702.07040 [astro-ph.CO]

    Article  ADS  Google Scholar 

  38. M. Kunz, S. Nesseris, I. Sawicki, Phys. Rev. D 94, 023510 (2016). https://doi.org/10.1103/PhysRevD.94.023510. arXiv:1604.05701 [astro-ph.CO]

    Article  ADS  Google Scholar 

  39. S. Floerchinger, M. Garny, N. Tetradis, U.A. Wiedemann, JCAP 01, 048 (2017). https://doi.org/10.1088/1475-7516/2017/01/048. arXiv:1607.03453 [astro-ph.CO]

    Article  ADS  Google Scholar 

  40. O. Gron, Astrophys. Space Sci. 173, 191 (1990). https://doi.org/10.1007/BF00643930

    Article  ADS  MathSciNet  Google Scholar 

  41. S. Weinberg, Astrophys. J. 168, 175 (1971). https://doi.org/10.1086/151073

    Article  ADS  Google Scholar 

  42. J.-S. Gagnon, J. Lesgourgues, JCAP 09, 026 (2011). https://doi.org/10.1088/1475-7516/2011/09/026. arXiv:1107.1503 [astro-ph.CO]

    Article  ADS  Google Scholar 

  43. I.H. Brevik, G. Stokkan, Astrophys. Space Sci. 239, 89 (1996). https://doi.org/10.1007/BF00653769

    Article  ADS  Google Scholar 

  44. G.L. Murphy, Phys. Rev. D 8, 4231 (1973). https://doi.org/10.1103/PhysRevD.8.4231

    Article  ADS  Google Scholar 

  45. B. L. Hu, Phys. Lett. A 90, 7 (1982)

    Article  MathSciNet  Google Scholar 

  46. M. Eshaghi, N. Riazi, A. Kiasatpour, (2015), arXiv:1504.07774 [gr-qc]

  47. K. Bamba, S.D. Odintsov, Eur. Phys. J. C 76, 18 (2016). https://doi.org/10.1140/epjc/s10052-015-3861-3. arXiv:1508.05451 [gr-qc]

    Article  ADS  Google Scholar 

  48. G.J. Mathews, N.Q. Lan, C. Kolda, Phys. Rev. D 78, 043525 (2008). https://doi.org/10.1103/PhysRevD.78.043525. arXiv:0801.0853 [astro-ph]

    Article  ADS  Google Scholar 

  49. A. Atreya, J.R. Bhatt, A. Mishra, JCAP 02, 024 (2018). https://doi.org/10.1088/1475-7516/2018/02/024. arXiv:1709.02163 [astro-ph.CO]

    Article  ADS  Google Scholar 

  50. P.K. Natwariya, J.R. Bhatt, A.K. Pandey, Eur. Phys. J. C 80, 767 (2020). https://doi.org/10.1140/epjc/s10052-020-8341-8. arXiv:1907.03445 [astro-ph.CO]

    Article  ADS  Google Scholar 

  51. S. Hofmann, D.J. Schwarz, H. Stoecker, Phys. Rev. D 64, 083507 (2001). https://doi.org/10.1103/PhysRevD.64.083507. arXiv:astro-ph/0104173

    Article  ADS  Google Scholar 

  52. S. Nojiri, S.D. Odintsov, Phys. Rev. D 72, 023003 (2005). https://doi.org/10.1103/PhysRevD.72.023003. arXiv:hep-th/0505215

    Article  ADS  Google Scholar 

  53. C. Eckart, Phys. Rev. 58, 919 (1940). https://doi.org/10.1103/PhysRev.58.919

    Article  ADS  Google Scholar 

  54. I. Muller, Z. Phys. 198, 329 (1967). https://doi.org/10.1007/BF01326412

    Article  ADS  Google Scholar 

  55. W. Israel, J.M. Stewart, Ann. Phys. 118, 341 (1979). https://doi.org/10.1016/0003-4916(79)90130-1

    Article  ADS  Google Scholar 

  56. W. Israel, J.M. Stewart, Ann. Phys. 118, 341 (1979). https://doi.org/10.1016/0003-4916(79)90130-1

    Article  ADS  Google Scholar 

  57. R. Maartens, Class. Quant. Grav. 12, 1455 (1995). https://doi.org/10.1088/0264-9381/12/6/011

    Article  ADS  MathSciNet  Google Scholar 

  58. J. Ren, X.-H. Meng, Phys. Lett. B 633, 1 (2006). https://doi.org/10.1016/j.physletb.2005.11.055. arXiv:astro-ph/0511163

    Article  ADS  Google Scholar 

  59. X.H. Meng, X. Dou, Commun. Theor. Phys. 52, 377 (2009). https://doi.org/10.1088/0253-6102/52/2/36. arXiv:0812.4904 [astro-ph]

    Article  ADS  Google Scholar 

  60. A. Hernández-Almada, Eur. Phys. J. C 79, 751 (2019). https://doi.org/10.1140/epjc/s10052-019-7264-8. arXiv:1904.04002 [physics.gen-ph]

    Article  ADS  Google Scholar 

  61. L. Herrera-Zamorano, M.A. García-Aspeitia, A. Hernández-Almada, Eur. Phys. J. C 80, 637 (2020). https://doi.org/10.1140/epjc/s10052-020-8225-y. arXiv:2007.04507 [astro-ph.CO]

    Article  ADS  Google Scholar 

  62. S. Weinberg, Gravitation and cosmology: principles and applications of the general theory of relativity (Wiley, New York, 1972)

    Google Scholar 

  63. G.L. Murphy, Phys. Rev. D 8, 4231 (1973). https://doi.org/10.1103/PhysRevD.8.4231

    Article  ADS  Google Scholar 

  64. T. Padmanabhan, S.M. Chitre, Phys. Lett. A 120, 433 (1987). https://doi.org/10.1016/0375-9601(87)90104-6

    Article  ADS  Google Scholar 

  65. I.H. Brevik, O. Gorbunova, Gen. Rel. Grav. 37, 2039 (2005). https://doi.org/10.1007/s10714-005-0178-9. arXiv:gr-qc/0504001

    Article  ADS  Google Scholar 

  66. N. Cruz, E. González, S. Lepe, D. Sáez-Chillón Gómez, JCAP 12, 017 (2018). https://doi.org/10.1088/1475-7516/2018/12/017. arXiv:1807.10729 [gr-qc]

    Article  ADS  Google Scholar 

  67. B.D. Normann, I. Brevik, Mod. Phys. Lett. A 32, 1750026 (2017). https://doi.org/10.1142/S0217732317500262. arXiv:1612.01794 [gr-qc]

    Article  ADS  Google Scholar 

  68. B.D. Normann, I. Brevik, Entropy 18, 215 (2016). https://doi.org/10.3390/e18060215. arXiv:1601.04519 [gr-qc]

    Article  ADS  Google Scholar 

  69. N. Cruz, E. González, J. Jovel, Phys. Rev. D 105, 024047 (2022). https://doi.org/10.1103/PhysRevD.105.024047. arXiv:2109.09865 [gr-qc]

    Article  ADS  Google Scholar 

  70. N. Cruz, E. González, J. Jovel, Symmetry (2022). https://doi.org/10.3390/sym14091866

    Article  Google Scholar 

  71. N. Cruz, E. González, J. Jovel, (2022), arXiv:2207.14244 [gr-qc]

  72. E. Rebhan, Astron. Astrophys. 353, 1 (2000). arXiv:astro-ph/0602515

    ADS  Google Scholar 

  73. M. Novello, E. Elbaz, Nuovo Cim. B 109, 741 (1994). https://doi.org/10.1007/BF02722531

    Article  ADS  Google Scholar 

  74. A.A. Coley, R.J. van den Hoogen, Class. Quant. Grav. 12, 1977 (1995). https://doi.org/10.1088/0264-9381/12/8/015. arXiv:gr-qc/9605061

    Article  ADS  Google Scholar 

  75. A.A. Coley, R.J. van den Hoogen, R. Maartens, Phys. Rev. D 54, 1393 (1996). https://doi.org/10.1103/PhysRevD.54.1393

    Article  ADS  MathSciNet  Google Scholar 

  76. M.K. Mak, J.A. Belinchon, T. Harko, Int. J. Mod. Phys. D 11, 1265 (2002). https://doi.org/10.1142/S0218271802002232. arXiv:gr-qc/0110119

    Article  ADS  Google Scholar 

  77. S. Lepe, G. Otalora, J. Saavedra, Phys. Rev. D 96, 023536 (2017). https://doi.org/10.1103/PhysRevD.96.023536. arXiv:1704.05625 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  78. N.J. Mohan, P. Krishna, A. Sasidharan, T.K. Mathew, Class. Quantum Grav. 37, 075007 (2020). https://doi.org/10.1088/1361-6382/ab7460. arXiv:1807.04041 [gr-qc]

    Article  ADS  Google Scholar 

  79. G. Acquaviva, A. Beesham, Class. Quantum Grav. 32, 215026 (2015). https://doi.org/10.1088/0264-9381/32/21/215026

    Article  ADS  Google Scholar 

  80. A. Sasidharan, T.K. Mathew, Eur. Phys. J. C 75, 348 (2015). https://doi.org/10.1140/epjc/s10052-015-3567-6. arXiv:1411.5154 [gr-qc]

    Article  ADS  Google Scholar 

  81. A. Sasidharan, T.K. Mathew, JHEP 06, 138 (2016). https://doi.org/10.1007/JHEP06(2016)138. arXiv:1511.05287 [gr-qc]

    Article  ADS  Google Scholar 

  82. A. Hernández-Almada, M.A. García-Aspeitia, J. Magaña, V. Motta, Phys. Rev. D 101, 063516 (2020). https://doi.org/10.1103/PhysRevD.101.063516. arXiv:2001.08667 [astro-ph.CO]

    Article  ADS  MathSciNet  Google Scholar 

  83. W. R. Inc., https://www.wolfram.com/mathematica “ Mathematica, Version 13.1,” Champaign, IL, 2022

  84. M. Benetti, H. Borges, C. Pigozzo, S. Carneiro, J. Alcaniz, JCAP 08, 014 (2021). https://doi.org/10.1088/1475-7516/2021/08/014. arXiv:2102.10123 [astro-ph.CO]

    Article  ADS  Google Scholar 

  85. K. Liao, S. Cao, J. Wang, X. Gong, Z.-H. Zhu, Phys. Lett. B 710, 17 (2012). https://doi.org/10.1016/j.physletb.2012.02.079. arXiv:1205.0972 [astro-ph.CO]

    Article  ADS  Google Scholar 

  86. H. Velten, D.J. Schwarz, J. Cosm. Astropart. Phys 2011, 016 (2011). https://doi.org/10.1088/1475-7516/2011/09/016. arXiv:1107.1143 [astro-ph.CO]

    Article  Google Scholar 

  87. S. Camera, C. Carbone, L. Moscardini, J. Cosm. Astropart. Phys 2012, 039 (2012). https://doi.org/10.1088/1475-7516/2012/03/039. arXiv:1202.0353 [astro-ph.CO]

    Article  Google Scholar 

  88. Malkin I. G., Gos. Izdat. tekh.-teoret. Lit., Moskow, (1952). English transl., AEC tr-3352 (1958)

  89. J. Goodman, J. Weare, Comm. App. Math. Comp. Sci. 5, 65 (2010). https://doi.org/10.2140/camcos.2010.5.65

    Article  Google Scholar 

  90. D. Foreman-Mackey, D.W. Hogg, D. Lang, J. Goodman, Publ. Astron. Soc. Pac. 125, 306 (2013). https://doi.org/10.1086/670067

    Article  ADS  Google Scholar 

  91. J. Magaña, M.H. Amante, M.A. Garcia-Aspeitia, V. Motta, Mon. Not. Roy. Astron. Soc. 476, 1036 (2018). https://doi.org/10.1093/mnras/sty260

    Article  ADS  Google Scholar 

  92. D.M. Scolnic et al., Astrophys. J. 859, 101 (2018). https://doi.org/10.3847/1538-4357/aab9bb. arXiv:1710.00845 [astro-ph.CO]

    Article  ADS  Google Scholar 

  93. R. Tripp, Astron. Astrophys. 331, 815 (1998)

    ADS  Google Scholar 

  94. R. Kessler, D. Scolnic, Astrophys. J. 836, 56 (2017). https://doi.org/10.3847/1538-4357/836/1/56. arXiv:1610.04677 [astro-ph.CO]

    Article  ADS  Google Scholar 

  95. R. Lazkoz, S. Nesseris, L. Perivolaropoulos, JCAP 11, 010 (2005). https://doi.org/10.1088/1475-7516/2005/11/010. arXiv:astro-ph/0503230

    Article  ADS  Google Scholar 

  96. G. Schwarz, Ann. Stat. 6, 461 (1978)

    Article  Google Scholar 

  97. M. Moresco, L. Pozzetti, A. Cimatti, R. Jimenez, C. Maraston, L. Verde, D. Thomas, A. Citro, R. Tojeiro, D. Wilkinson, JCAP 05, 014 (2016). https://doi.org/10.1088/1475-7516/2016/05/014. arXiv:1601.01701 [astro-ph.CO]

    Article  ADS  Google Scholar 

  98. D. Blas, S. Floerchinger, M. Garny, N. Tetradis, U.A. Wiedemann, JCAP 11, 049 (2015). https://doi.org/10.1088/1475-7516/2015/11/049. arXiv:1507.06665 [astro-ph.CO]

    Article  ADS  Google Scholar 

  99. Z. Berezhiani, P. Ciarcelluti, D. Comelli, F.L. Villante, Int. J. Mod. Phys. D 14, 107 (2005). https://doi.org/10.1142/S0218271805005165. arXiv:astro-ph/0312605

    Article  ADS  Google Scholar 

  100. R. Foot, S. Vagnozzi, JCAP 07, 013 (2016). https://doi.org/10.1088/1475-7516/2016/07/013. arXiv:1602.02467 [astro-ph.CO]

    Article  ADS  Google Scholar 

  101. D. Pavón, D. Jou, and J. Casas-Vázquez, in Annales de l’IHP Physique théorique, Vol. 36, pp. 79–88 (1982)

  102. M. Zakari, D. Jou, Phys. Rev. D 48, 1597 (1993). https://doi.org/10.1103/PhysRevD.48.1597

    Article  ADS  Google Scholar 

Download references

Acknowledgements

G.G acknowledges financial support from Vicerrectoría de Investigación, Desarrollo e Innovación - Universidad de Santiago de Chile, Proyecto DICYT, Código 042031 CM\(\_\)POSTDOC. G.P. acknowledges financial support by Dicyt-USACH Grant No. 042231PA. E.G. thanks to Vicerrectoría de Investigación y Desarrollo Tecnológico (VRIDT) at Universidad Católica del Norte (UCN) by the scientific support of Núcleo de Investigación No. 7 UCN-VRIDT 076/2020, Núcleo de Modelación y Simulación Científica (NMSC). A.R. acknowledges Universidad de Santiago de Chile for financial support through the Proyecto POSTDOCDICYT, Código 043131 CM-POSTDOC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo Palma.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez, G., Palma, G., González, E. et al. A new parametrization for bulk viscosity cosmology as extension of the \(\Lambda \)CDM model. Eur. Phys. J. Plus 138, 738 (2023). https://doi.org/10.1140/epjp/s13360-023-04367-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04367-6

Navigation