Skip to main content
Log in

Arbitrary amplitude dust–ion acoustic nonlinear and supernonlinear wave structures in a magnetized five components plasma

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We have applied the Sagdeev pseudo-potential approach and phase portrait analysis to confirm the existence of different dust-ion acoustic (DIA) nonlinear wave structures in a collisionless magnetized plasma. The constituents of the present magnetized plasma are negative immobile dust particulates, non-isothermal positrons, nonthermal electrons, isothermal electrons and adiabatic warm ions. The plasma system contains eleven parameters and the nonlinear waves have been studied through the compositional parameter spaces consisting of these eleven parameters. The effects of these parameters on the amplitude of the nonlinear wave structures have also been investigated. We have extensively discussed the existence of negative potential solitary waves (NPSWs), positive potential solitary waves (PPSWs), positive potential supersolitons (PPSSs), negative potential double layers (NPDL) and supernonlinear periodic waves. We have also analysed the coexistence of PPSWs and NPSWs, coexistence of NPSWs and PPSSs, coexistence of NPDL and PPSSs. For the increasing value of any one of the parameters \(n_{pc}\), \(n_{sc}\) and \(\sigma _{sc}\), there exists a sequence of NPSWs converging to the double layer solution of the same polarity, whereas it is observed that a sequence of NPSWs converging to the double layer solution for decreasing value of any one of the parameters \(\beta _{e}\), \(\sigma _{pc}\) and \(l_{z}\). Therefore, the amplitude of the NPDL solution can be regarded as an upper bound of the amplitude of the sequence of the NPSWs. The dependence of the amplitudes of the PPSWs and PPSSs on the different parameters of the system has also been critically investigated.

Graphic abstract

For the first time, we have considered a magnetized collisionless five components e–p–i–d plasma system to investigate the arbitrary amplitude nonlinear wave structures including soliton with both polarities, double layers, supersolitons and supernonlinear periodic waves. We have also discussed the effects of various physical parameters involved in the system. The results of our present investigation on arbitrary amplitude DIA nonlinear wave structures may be helpful to distinguish the signals obtained from the Jupiter atmosphere or the auroral region of the upper Earth’s ionosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data Availability Statement

All relevant data are included in the manuscript.

References

  1. R. Bharuthram, P.K. Shukla, Phys. Fluids 29, 3214 (1986)

    Article  ADS  Google Scholar 

  2. S. Baboolal, R. Bharuthram, M.A. Hellberg, J. Plasma Phys. 40, 163 (1988)

    Article  ADS  Google Scholar 

  3. H.R. Pakzad, M. Tribeche, Astrophys. Space Sci. 334, 45 (2011)

    Article  ADS  Google Scholar 

  4. S.K. Maharaj, R. Bharuthram, S.V. Singh, G.S. Lakhina, Phys. Plasmas 19, 072320 (2012)

    Article  ADS  Google Scholar 

  5. F. Verheest, M.A. Hellberg, I. Kourakis, Phys. Plasmas 20, 082309 (2013)

    Article  ADS  Google Scholar 

  6. F. Verheest, G.S. Lakhina, M.A. Hellberg, Phys. Plasmas 21, 062303 (2014)

    Article  ADS  Google Scholar 

  7. G.S. Lakhina, S.V. Singh, A.P. Kakad, Phys. Plasmas 21, 062311 (2014)

    Article  ADS  Google Scholar 

  8. S.S. Ghosh, A.N. Sekar Iyengar, Phys. Plasmas 21, 082104 (2014)

    Article  ADS  Google Scholar 

  9. A. Saha, P. Chatterjee, Astrophys. Space Sci. 350, 631 (2014)

    Article  ADS  Google Scholar 

  10. C.P. Olivier, S.K. Maharaj, R. Bharuthram, Phys. Plasmas 22, 082312 (2015)

    Article  ADS  Google Scholar 

  11. S.V. Singh, G.S. Lakhina, Commun. Nonlinear Sci. Numer. Simulat. 23, 274 (2015)

    Article  ADS  Google Scholar 

  12. A. Saha, J. Tamang, Adv. Space Res. 63, 1596 (2019)

    Article  ADS  Google Scholar 

  13. A. Saha, P. Chatterjee, S. Banerjee, Eur. Phys. J. Plus 135, 801 (2020)

    Article  Google Scholar 

  14. S. Dalui, A. Bandyopadhyay, Indian J. Phys. 95, 367 (2021)

    Article  ADS  Google Scholar 

  15. M. Irshad, M. Khalid, Eur. Phys. J. Plus 137, 893 (2022)

    Article  Google Scholar 

  16. H. Rashid, U. Zakir, F. Hadi, A. Zeeshan, Arab. J. Sci. Eng 48, 835 (2023)

    Article  Google Scholar 

  17. M.K. Mishra, R.S. Tiwari, S.K. Jain, Phys. Rev. E 76, 036401 (2007)

    Article  ADS  Google Scholar 

  18. J.F. Zhang, Y.Y. Wang, L. Wu, Phys. Plasmas 16, 062102 (2009)

    Article  ADS  Google Scholar 

  19. P. Chatterjee, U.N. Ghosh, K. Roy, S.V. Muniandy, C.S. Wong, B. Sahu, Phys. Plasmas 17, 122314 (2010)

    Article  ADS  Google Scholar 

  20. S. Ghosh, R. Bharuthram, Astrophys. Space Sci. 331, 163 (2011)

    Article  ADS  Google Scholar 

  21. A. Rasheed, N.L. Tsintsadze, G. Murtaza, Phys. Plasmas 18, 112701 (2011)

    Article  ADS  Google Scholar 

  22. P. Eslami, M. Mottaghizadeh, H.R. Pakzad, Phys. Plasmas 18, 102313 (2011)

    Article  ADS  Google Scholar 

  23. S.K. Jain, M.K. Mishra, J. Plasma Phys. 79, 661 (2013)

    Article  ADS  Google Scholar 

  24. M. M. Rahman, M. S. Alam, A. A. Mamun, Eur. Phys. J. Plus 129 (2014)

  25. B. Ghosh, S. Banerjee, Indian J. Phys. 89, 1307 (2015)

    Article  ADS  Google Scholar 

  26. M.A. Hossen, A.A. Mamun, IEEE Trans. Plasma Sci. 44, 643 (2016)

    Article  ADS  Google Scholar 

  27. S. Lashgarinezhad, A.H. Sari, D. Dorranian, Chaos, Solitons Fractals 103, 261 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  28. A. Paul, A. Bandyopadhyay, Indian J. Phys. 92, 1187 (2018)

    Article  ADS  Google Scholar 

  29. C. Lavanya, Braz. J. Phys. 52, 38 (2022)

    Article  ADS  Google Scholar 

  30. H.G. Abdelwahed, J. Taibah, Univ. Sci. 17, 2210347 (2023)

    Google Scholar 

  31. A.E. Dubinov, D.Y. Kolotkov, M.A. Sazonkin, Plasma Phys. Rep. 38, 833 (2012)

    Article  ADS  Google Scholar 

  32. A. Das, A. Bandyopadhyay, K.P. Das, J. Plasma Phys. 78, 149 (2012)

    Article  ADS  Google Scholar 

  33. M.S. Alam, M.M. Masud, A.A. Mamun, Chin. Phys. B 22, 115202 (2013)

    Article  ADS  Google Scholar 

  34. H. Ainejad, M. Mahdavi, M. Shahmansouri, Eur. Phys. J. Plus 129, 99 (2014)

    Article  Google Scholar 

  35. S.A. Ema, M. Ferdousi, S. Sultana, A.A. Mamun, Eur. Phys. J. Plus 130, 46 (2015)

    Article  Google Scholar 

  36. L.B. Gogoi, P.N. Deka, Phys. Plasmas 24, 033708 (2017)

    Article  ADS  Google Scholar 

  37. S. Roy, R.R. Kairi, S. Raut, Braz. J. Phys. 51, 1651 (2021)

    Article  ADS  Google Scholar 

  38. A. Hussein, M.M. Selim, Eur. Phys. J. Plus 136, 797 (2021)

    Article  Google Scholar 

  39. S.N. Naeem, A. Qamar, M. Khalid, A. Rahman, Eur. Phys. J. Plus 136, 1205 (2021)

    Article  Google Scholar 

  40. A. Sinha, B. Sahu, Adv. Space Res. 67, 1244 (2021)

    Article  ADS  Google Scholar 

  41. M. Khalid, E.A. Elghmaz, L. Shamshad, Braz. J. Phys. 53, 2 (2023)

    Article  ADS  Google Scholar 

  42. S. Ghosh, R. Bharuthram, Astrophys. Space Sci. 314, 121 (2008)

    Article  ADS  Google Scholar 

  43. P.K. Shukla, Phys. Scr. 77, 068201 (2008)

    Article  ADS  Google Scholar 

  44. N. Jehan, W. Masood, A.M. Mirza, Phys. Scr. 80, 035506 (2009)

    Article  ADS  Google Scholar 

  45. S.A. El-Tantawy, N.A. El-Bedwehy, W.M. Moslem, Phys. Plasmas 18, 052113 (2011)

    Article  ADS  Google Scholar 

  46. S.A. El-Tantawy, W.M. Moslem, Phys. Plasmas 18, 112105 (2011)

    Article  ADS  Google Scholar 

  47. A. Esfandyari-Kalejahi, M. Afsari-Ghazi, K. Noori, S. Irani, Phys. Plasmas 19, 082308 (2012)

    Article  ADS  Google Scholar 

  48. S. Guo, L. Mei, A. Sun, Ann. Phys. 332, 38 (2012)

    Article  ADS  Google Scholar 

  49. A.E. Dubinov, D.Y. Kolotkov, IEEE Trans. Plasma Sci. 40, 1429 (2012)

    Article  ADS  Google Scholar 

  50. A.E. Dubinov, D.Y. Kolotkov, M.A. Sazonkin, Tech. Phys. 57, 585 (2012)

    Article  Google Scholar 

  51. M.M. Masud, S. Sultana, A.A. Mamun, Astrophys. Space Sci. 348, 99 (2013)

    Article  ADS  Google Scholar 

  52. A.S. Bains, N.S. Saini, T.S. Gill, Astrophys. Space Sci. 343, 293 (2013)

    Article  ADS  Google Scholar 

  53. N.S. Saini, B.S. Chahal, A.S. Bains, Astrophys. Space Sci. 347, 129 (2013)

    Article  ADS  Google Scholar 

  54. H.Y. Wang, K.B. Zhang, J. Korean Phys. Soc. 64, 1677 (2014)

    Article  ADS  Google Scholar 

  55. H.Y. Wang, K.B. Zhang, Pramana 84, 145 (2015)

    Article  ADS  Google Scholar 

  56. A. Paul, A. Bandyopadhyay, Astrophys. Space Sci. 361, 172 (2016)

    Article  ADS  Google Scholar 

  57. G. Banerjee, S. Maitra, Phys. Plasmas 23, 123701 (2016)

    Article  ADS  Google Scholar 

  58. S. Sardar, A. Bandyopadhyay, K.P. Das, Phys. Plasmas 23, 073703 (2016)

    Article  ADS  Google Scholar 

  59. S. Sardar, A. Bandyopadhyay, K.P. Das, Phys. Plasmas 23, 123706 (2016)

    Article  ADS  Google Scholar 

  60. S. Sardar, A. Bandyopadhyay, K.P. Das, Phys. Plasmas 24, 063705 (2017)

    Article  ADS  Google Scholar 

  61. A. Paul, A. Das, A. Bandyopadhyay, Plasma Phys. Rep. 43, 218 (2017)

    Article  ADS  Google Scholar 

  62. A. Paul, A. Bandyopadhyay, K.P. Das, Phys. Plasmas 24, 013707 (2017)

    Article  ADS  Google Scholar 

  63. K. Singh, N. Kaur, N.S. Saini, Phys. Plasmas 24, 063703 (2017)

    Article  ADS  Google Scholar 

  64. E. Saberian, A. Esfandyari-Kalejahi, M. Afsari-Ghazi, Plasma Phys. Rep. 43, 83 (2017)

    Article  ADS  Google Scholar 

  65. O.H. El-Kalaawy, Eur. Phys. J. Plus 133, 58 (2018)

    Article  Google Scholar 

  66. J. Tamang, Advanced Computational and Communication Paradigms, vol. 375 (Springer, Berlin, 2018)

    Google Scholar 

  67. A. Paul, A. Bandyopadhyay, K.P. Das, Plasma Phys. Rep. 45, 466 (2019)

    Article  ADS  Google Scholar 

  68. A.A. Noman, N.A. Chowdhury, A. Mannan, A.A. Mamun, Contrib. Plasma Phys. 59, 201900023 (2019)

    Article  ADS  Google Scholar 

  69. G. Banerjee, S. Maitra, AJAMC 1, 27 (2020)

    Article  Google Scholar 

  70. S.K. Paul, N.A. Chowdhury, A. Mannan, A.A. Mamun, Pramana 94, 58 (2020)

    Article  ADS  Google Scholar 

  71. B. Boro, A.N. Dev, B.K. Saikia, N.C. Adhikary, Plasma Phys. Rep. 46, 641 (2020)

    Article  ADS  Google Scholar 

  72. B. Boro, A.N. Dev, R. Sarma, B.K. Saikia, N.C. Adhikary, Plasma Phys. Rep. 47, 557 (2021)

    Article  ADS  Google Scholar 

  73. S. Banik, R.K. Shikha, A.A. Noman, N.A. Chowdhury, A. Mannan, T.S. Roy, A.A. Mamun, Eur. Phys. J. D 75, 43 (2021)

    Article  ADS  Google Scholar 

  74. M. Rahman, N.A. Chowdhury, A. Mannan, A.A. Mamun et al., Galaxies 9, 31 (2021)

    Article  ADS  Google Scholar 

  75. A. Shome, G. Banerjee, Ricerche Matemat, 1 (2021)

  76. K.P. Das, F. Verheest, J. Plasma Phys. 41, 139 (1989)

    Article  ADS  Google Scholar 

  77. C. Yinhua, M.Y. Yu, Phys. Plasmas 1, 1868 (1994)

    Article  ADS  Google Scholar 

  78. C.R. Choi, C.M. Ryu, N.C. Lee, D.Y. Lee, Phys. Plasmas 12, 022304 (2005)

    Article  ADS  Google Scholar 

  79. C.R. Choi, C.M. Ryu, N.C. Lee, D. Lee, Y. Kim, Phys. Plasmas 12, 072301 (2005)

    Article  ADS  Google Scholar 

  80. S. Maitra, R. Roychoudhury, Phys. Plasmas 13, 112302 (2006)

    Article  ADS  Google Scholar 

  81. S. Mahmood, S. Hussain, Phys. Plasmas 14, 082303 (2007)

    Article  ADS  Google Scholar 

  82. H.K. Malik, R. Kumar, K.E. Lonngren, IEEE Trans. Plasma Sci. 38, 1073 (2010)

    Article  ADS  Google Scholar 

  83. M. Shahmansouri, H. Alinejad, Phys. Plasmas 19, 123701 (2012)

    Article  ADS  Google Scholar 

  84. S.A. El-Tantawy, N.A. El-Bedwehy, S. Khan, S. Ali, W.M. Moslem, Astrophys. Space Sci. 342, 425 (2012)

    Article  ADS  Google Scholar 

  85. A. Saha, P. Chatterjee, Astrophys. Space Sci. 349, 813 (2014)

    Article  ADS  Google Scholar 

  86. O.R. Rufai, R. Bharuthram, S.V. Singh, G.S. Lakhina, Phys. Plasmas 21, 082304 (2014)

    Article  ADS  Google Scholar 

  87. O.R. Rufai, R. Bharuthram, S.V. Singh, G.S. Lakhina, Commun. Nonlinear Sci. Numer. Simulat. 19, 1338 (2014)

    Article  ADS  Google Scholar 

  88. O.R. Rufai, A.S. Bains, Z. Ehsan, Astrophys. Space Sci. 357, 102 (2015)

    Article  ADS  Google Scholar 

  89. O.R. Rufai, R. Bharuthram, S.V. Singh, G.S. Lakhina, Phys. Plasmas 23, 032309 (2016)

    Article  ADS  Google Scholar 

  90. M. Sayyar, H. Zahed, S.J. Pestehe, S. Sobhanian, Phys. Plasmas 23, 073704 (2016)

    Article  ADS  Google Scholar 

  91. F. Farhad Kiyaei, D. Dorranian, Phys. Plasmas 24, 012107 (2017)

    Article  ADS  Google Scholar 

  92. F. Verheest, M.A. Hellberg, Phys. Plasmas 24, 022306 (2017)

    Article  ADS  Google Scholar 

  93. M. Farooq, M. Ahmad, Phys. Plasmas 24, 123707 (2017)

    Article  ADS  Google Scholar 

  94. B. Kaur, N.S. Saini, Z Naturforsch A 73, 215 (2018)

    Article  ADS  Google Scholar 

  95. D. Debnath, A. Bandyopadhyay, K.P. Das, Phys. Plasmas 25, 033704 (2018)

    Article  ADS  Google Scholar 

  96. G. Yashika, K. Nimardeep, K. Singh, N.S. Saini, Plasma Sci. Technol. 20, 074005 (2018)

    Article  Google Scholar 

  97. S.M. Motevalli, T. Mohsenpour, N. Dashtban, Contrib. Plasma Phys. 59, 111 (2019)

    Article  ADS  Google Scholar 

  98. A.R. Abdullah, J. Seadawy Wang, Braz. J. Phys. 49, 67 (2019)

    Article  ADS  Google Scholar 

  99. M. Farooq, A. Mushtaq, J. Qasim, Contrib. Plasma Phys. 59, 122 (2019)

    Article  ADS  Google Scholar 

  100. O. Rahman, M.M. Haider, Theor. Phys. 4, 47 (2019)

    Article  Google Scholar 

  101. M.N. Haque, A. Mannan, A.A. Mamun, Contrib. Plasma Phys. 59, 201900049 (2019)

    Article  ADS  Google Scholar 

  102. A.N. Dev, M.K. Deka, R.K. Kalita, J. Sarma, Eur. Phys. J. Plus 135, 843 (2020)

    Article  Google Scholar 

  103. S.K. El-Labany, W.F. El-Taibany, E.E. Behery, R. Abd-Elbaki, Sci. Rep. 10, 16152 (2020)

    Article  ADS  Google Scholar 

  104. M.A. El-Borie, M. Abd-Elzaher, A. Atteya, Chin. J. Phys. 63, 258 (2020)

    Article  Google Scholar 

  105. D. Debnath, A. Bandyopadhyay, Astrophys. Space Sci. 365, 72 (2020)

    Article  ADS  Google Scholar 

  106. M.N. Haque, A. Mannan, IEEE Trans. Plasma Sci. 48, 2591 (2020)

    Article  ADS  Google Scholar 

  107. J.K. Chawla, P.C. Singhadiya, R.S. Tiwari, Pramana 94, 13 (2020)

    Article  ADS  Google Scholar 

  108. M. Shamir, G. Murtaza, Eur. Phys. J. Plus 135, 394 (2020)

    Article  Google Scholar 

  109. H.K. Malik, R. Srivastava, S. Kumar, D. Singh, J. Taibah, Univ. Sci. 14, 417 (2020)

    Google Scholar 

  110. S. Thakur, C. Das, S. Chandra, IEEE Trans. Plasma Sci. 50, 1545 (2021)

    Article  ADS  Google Scholar 

  111. M.A. Salam, M.A. Akbar, M.Z. Ali, M.M. Haider, Result Phys. 26, 104376 (2021)

    Article  Google Scholar 

  112. O.R. Rufai, R. Bharuthram, S.K. Maharaj, Phys. Plasmas 28, 052901 (2021)

    Article  ADS  Google Scholar 

  113. R. Maity, B. Sahu, Z Naturforsch A 76, 1077 (2021)

    Article  ADS  Google Scholar 

  114. N.S. Saini, K. Singh, P. Sethi, Laser Particle Beams 2021, 1 (2021)

    Article  Google Scholar 

  115. D. Debnath, A. Bandyopadhyay, Z Naturforsch A 76, 985 (2021)

    Article  ADS  Google Scholar 

  116. S. Dalui, S. Sardar, A. Bandyopadhyay, Z Naturforsch A 76, 455 (2021)

    Article  ADS  Google Scholar 

  117. M.R. Hassan, S. Sultana, Contrib. Plasma Phys. 61(9), 202100065 (2021)

    Article  Google Scholar 

  118. A. Atteya, M.A. El-Borie, G.D. Roston, A.A.S. El-Helbawy, P.K. Prasad, A. Saha, Z. Naturforsch. A 76, 757 (2021)

    Article  ADS  Google Scholar 

  119. P.K. Prasad, A. Saha, J. Astrophys. Astron. 42, 9 (2021)

    Article  ADS  Google Scholar 

  120. M. Khalid, A. Ullah, A. Kabir, H. Khan, M. Irshad, S.M. Shah, EPL 138, 63001 (2022)

    Article  ADS  Google Scholar 

  121. M.A. Salam, M.A. Akbar, M.Z. Ali et al., Phys. Scr. 97, 125605 (2022)

    Article  ADS  Google Scholar 

  122. W.F. El-Taibany, P.K. Karmakar, A.A. Beshara, M.A. El-Borie, S.A. Gwaily, A. Atteya, Sci. Rep. 12, 19078 (2022)

    Article  ADS  Google Scholar 

  123. H.A. Alyousef, M. Khalid, A. Kabir, Europhys. Lett. 139, 53002 (2022)

    Article  ADS  Google Scholar 

  124. M. Khalid, M. Khan, A. Rahman, F. Hadi, Indian J. Phys 96, 1783 (2022)

    Article  ADS  Google Scholar 

  125. S.Y. El-Monier, A.S. El-Helbawy, M.M. Elsayed, M. Saad, Phys. Scr. 98, 065602 (2023)

    Article  ADS  Google Scholar 

  126. A.N. Das, S. Saha, S. Raut, P. Talukdar, Plasma Phys. Rep. 49(4), 454 (2023)

    Article  ADS  Google Scholar 

  127. B. Pradhan, A. Gowrisankar, A. Abdikian, S. Banerjee, A. Saha, Phys. Scr. 98, 065604 (2023)

    Article  ADS  Google Scholar 

  128. P. Halder, A. Bandyopadhyay, S. Dalui, S. Sardar, Z Naturforsch. A 77, 659 (2022)

    Article  ADS  Google Scholar 

  129. S. Dalui, A. Bandyopadhyay, Astrophys. Space Sci. 364, 182 (2019)

    Article  ADS  Google Scholar 

  130. R.A. Cairns, A.A. Mamum, R. Bingham, R. Boström, R.O. Dendy, C.M.C. Nairn, P.K. Shukla, Geophys. Res. Lett. 22, 2709 (1995)

    Article  ADS  Google Scholar 

  131. M.Y. Yu, H. Luo, Phys. Plasmas 15, 024504 (2008)

    Article  ADS  Google Scholar 

  132. H.G. Abdelwahed, Astrophys. Space Sci. 341, 491 (2012)

    Article  ADS  Google Scholar 

  133. Y.W. Hou, M.X. Chen, M.Y. Yu, B. Wu, Plasma Phys. Rep. 42, 900 (2016)

    Article  ADS  Google Scholar 

  134. W.M. Moslem, R.E. Tolba, S. Ali, Phys. Scr. 94, 075601 (2019)

    Article  ADS  Google Scholar 

  135. H.A. Al-Yousef, B.M. Alotaibi, R.E. Tolba, W.M. Moslem, Results Phys. 21, 103792 (2021)

    Article  Google Scholar 

  136. G. Slathia, K. Singh, N.S. Saini, IEEE Trans. Plasma Sci. 50, 1723 (2022)

    Article  ADS  Google Scholar 

  137. G. Slathia, K. Singh, N.S. Saini, J. Astrophys. Astron. 43, 63 (2022)

    Article  ADS  Google Scholar 

  138. F. Sayed, A.A. Mamun, Phys. Plasmas 14, 014501 (2007)

    Article  ADS  Google Scholar 

  139. A. Rahman, A.A. Mamun, S.M. Khurshed Alam, Astrophys. Space Sci. 315, 243 (2008)

    Article  ADS  Google Scholar 

  140. G. Mandal, P. Chatterjee, Z. Naturforsch. A 65, 85 (2010)

    Article  ADS  Google Scholar 

  141. S.Z. Alamri, Z. Naturforsch. A 74, 227 (2019)

    Article  ADS  Google Scholar 

  142. M. Farooq, M. Ahmad, Q. Jan, Contrib. Plasma Phys. 61, 202000170 (2021)

    Article  Google Scholar 

  143. P. Halder, A. Bandyopadhyay, S. Sardar, Plasma Phys. Rep. 49, 467 (2023)

    Article  ADS  Google Scholar 

  144. S.I. Popel, M.Y. Yu, Contrib. Plasma Phys. 35, 103 (1995)

    Article  ADS  Google Scholar 

  145. J.X. Ma, M.Y. Yu, Phys. Plasmas 1, 3520 (1994)

    Article  ADS  Google Scholar 

  146. S.I. Popel, M.Y. Yu, V.N. Tsytovich, Phys. Plasmas 3, 4313 (1996)

    Article  ADS  Google Scholar 

  147. S.I. Popel, V.N. Tsytovich, M.Y. Yu, Astrophys. Space Sci. 256, 107 (1997)

    Article  ADS  Google Scholar 

  148. S. Ghosh, S. Sarkar, M. Khan, M.R. Gupta, Phys. Lett. A 274, 162 (2000)

    Article  ADS  Google Scholar 

  149. J. Vranješ, B.P. Pandey, S. Poedts, Phys. Rev. E 64, 066404 (2001)

    Article  ADS  Google Scholar 

  150. S.I. Popel, A.P. Golub, T.V. Losseva, R. Bingham, S. Benkadda, Phys. Plasmas 8, 1497 (2001)

    Article  ADS  Google Scholar 

  151. A.A. Mamun, P.K. Shukla, IEEE Trans. Plasma Sci. 30, 720 (2002)

    Article  ADS  Google Scholar 

  152. S.I. Popel, S.N. Andreev, A.A. Gisko, A.P. Golub, T.V. Losseva, Plasma Phys. Rep. 30, 284 (2004)

    Article  ADS  Google Scholar 

  153. E.F. El-Shamy, Chaos Solitons Fractals 25, 665 (2005)

    Article  ADS  Google Scholar 

  154. T.V. Losseva, S.I. Popel, A.P. Golub, P.K. Shukla, Phys. Plasmas 16, 093704 (2009)

    Article  ADS  Google Scholar 

  155. H. Alinejad, Astrophys. Space Sci. 331, 611 (2011)

    Article  ADS  Google Scholar 

  156. H. Alinejad, M. Tribeche, M.A. Mohammadi, Phys. Lett. A 375, 4183 (2011)

    Article  ADS  Google Scholar 

  157. S.A. Elwakil, M.A. Zahran, E.K. El-Shewy, A.E. Mowafy, Adv. Space Res. 48, 1067 (2011)

    Article  ADS  Google Scholar 

  158. T.V. Losseva, S.I. Popel, A.P. Golub, Plasma Phys. Rep. 38, 729 (2012)

    Article  ADS  Google Scholar 

  159. M. Kamran, F. Sattar, M. Khan, R. Khan, M. Ikram, Res. Phys. 21, 103808 (2021)

    Google Scholar 

  160. T.V. Losseva, S.I. Popel, A.P. Golub, Plasma Phys. Rep. 46, 1089 (2020)

    Article  ADS  Google Scholar 

  161. F. Verheest, T. Cattaert, M.A. Hellberg, Phys. Plasmas 12, 082308 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  162. T.K. Baluku, M.A. Hellberg, Phys. Plasmas 15, 123705 (2008)

    Article  ADS  Google Scholar 

  163. F. Sayed, A.A. Mamun, Pramana 70, 527 (2008)

    Article  ADS  Google Scholar 

  164. F. Verheest, M.A. Hellberg, I. Kourakis, Phys. Rev. E 87(4), 043107 (2013)

    Article  ADS  Google Scholar 

  165. R.Z. Sagdeev, M.A. Leontovich, Reviews of Plasma Physics, vol. 4 (Consultants Bureau, New York, 1966)

    Google Scholar 

  166. A.E. Dubinov, D.Y. Kolotkov, Plasma Phys. Rep. 38, 909 (2012)

    Article  ADS  Google Scholar 

  167. A.E. Dubinov, D.Y. Kolotkov, Rev. Mod. Plasma Phys. 2, 2 (2018)

    Article  ADS  Google Scholar 

  168. A. Abdikian, J. Tamang, A. Saha, Phys. Scr. 96, 095605 (2021)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the reviewers and the editor for their constructive comments to improve this paper. One of the authors (Paltu Halder) is thankful to the Government of India, CSIR (HRDG) Fellowship for providing financial support [File No.: 09/096(0988)/2019-EMR-I].

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to this work.

Corresponding author

Correspondence to Sankirtan Sardar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halder, P., Dalui, S., Sardar, S. et al. Arbitrary amplitude dust–ion acoustic nonlinear and supernonlinear wave structures in a magnetized five components plasma. Eur. Phys. J. Plus 138, 734 (2023). https://doi.org/10.1140/epjp/s13360-023-04359-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04359-6

Navigation