Skip to main content
Log in

Effect of nonthermal electrons and positrons on ion-acoustic solitary waves in a plasma with warm drifting ions

  • Original paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Using Sagdeev potential technique, ion-acoustic solitary waves have been theoretically studied in collisionless unmagnetized plasma consisting of nonthermal electrons, nonthermal positrons and warm drifting positive ions. Ion-acoustic solitary wave solutions have been obtained and its profiles have been numerically analyzed with respect to plasma parameters. The nonthermal parameters and temperatures are shown to play significant role on the formation and nature of solitary waves. It is shown that the nature, amplitude and width of lower- and higher-order solitons depend sensitively on these plasma parameters. The dependence of Sagdeev potential profile on different plasma parameters has also been examined. We have found that stronger nonthermality leads to shorter and wider solitons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. H R Miller and P J Witta Active Galactic Nuclei (Springer: Berlin) p 202 (1978)

  2. F C Michel Rev. Mod. Phys. 54 1 (1982)

  3. F C Michel Theory of Neutron star Magnetosphere (Chicago: Chicago University Press) (1991)

  4. M I Barns Positron Electron Pairs in Astrophysics (New York: American Institute of Physics) (1983)

    Google Scholar 

  5. W K Misner, S Thorne and J A Wheeler Gravitation (San Francisco: Freeman) p 763 (1973)

  6. M J Rees, G W Gibbons, S W Hawking and S Siklaseds The Early Universe (Cambridge: Cambridge University Press) (1983)

  7. E Tandberg-Hansen and A G Emslie The Physics of Solar Flares (Cambridge: Cambridge University Press) p 124 (1988)

  8. C M Surko, M Leventhal and A Passner Phys. Rev. Lett. 62 601 (1989)

  9. H Bochmer, M Adams and N Rynn Phys. Plasmas 2 4369 (1995)

  10. E P Liang, S C Wilks and M Tabak Phys. Rev. Lett. 81 4887 (1998)

    Article  ADS  Google Scholar 

  11. V I Berezhiani, D D Tskhakaya and P K Shukla Phys. Rev. A 46 6608 (1992)

    Article  ADS  Google Scholar 

  12. H R Pakzad and K Javidan Indian J. Phys. 87 705 (2013)

    Article  ADS  Google Scholar 

  13. S N Paul, C Das, I Paul, B Bondyopadhyay, S Chottopadhyaya and S S De Indian J. Phys. 86 545 (2012)

    Article  ADS  Google Scholar 

  14. S A El-Tantawy, M Tribeche and W M Moslem Phys. Plasmas 19 032104 (2012)

    Article  ADS  Google Scholar 

  15. C Tsallis J. Stat. Phys. 52 479 (1988)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. R Lundin et al. Nature 341 609 (1968)

    Article  ADS  Google Scholar 

  17. V M Vasyliunas J. Geophys. Res. 73 2839 (1968)

    Article  ADS  Google Scholar 

  18. A Hasegawa, K Mima and M Duong-van Phys. Rev. Lett. 54 2608 (1985)

    Article  ADS  Google Scholar 

  19. M A Hellberg, R L Mace, R J Armstrong and G Karlstad J. Plasma Phys. 64 433 (2000)

    Article  ADS  Google Scholar 

  20. T P Armstrong, M T Paonessa, E V Bell and M Krimigis J. Geophys. Res. 88 893 (1983)

    Google Scholar 

  21. M R Collier J. Geophys. Res. Lett. 20 1531 (1993)

    Article  ADS  Google Scholar 

  22. V Pierrad and M Lazar Solar Phys. 267 153 (2002)

    Article  ADS  Google Scholar 

  23. M Maksimovic, S P Gary and R M Skoug J. Geophys. Res. 105 18337 (2000)

    Article  ADS  Google Scholar 

  24. E E Antonova, N O Ermakova, M V Stepanova and M V Teltzov Adv. Space Res. 31 1229 (2003)

    Article  ADS  Google Scholar 

  25. H Mori et al. Ann. Geophys. 22 1613 (2004)

    Article  ADS  Google Scholar 

  26. F L Scarf, R W Fredrick, L A Frank and M Neugebauer Geophys. Res. 76 5162 (1971)

    Article  ADS  Google Scholar 

  27. S P Christon, D G Mitchell, D J Williams, L A Frank, C Y Huang and T E Eastman J. Geophys. Res. 93 2562 (1988)

    Google Scholar 

  28. W C Feldman, R C Anderson, J R Asbridge, S J Bame, J T Gosling and R D Zwickl J. Geophys. Res. 87 632 (1982)

    Article  ADS  Google Scholar 

  29. W C Feldman et al. J. Geophys. Res. 88 96 (1983)

  30. P Schippers et al. J. Geophys. Res. 113 A07208 (2008)

  31. J R Asbridge, S J Bame and I B Strong J. Geophys. Res. 73 5777 (1968)

    Article  ADS  Google Scholar 

  32. P O Dovner, A I Erikson, R Bostorm and B Holdack Geophys. Res. Lett. 21 1827 (1994)

    Article  ADS  Google Scholar 

  33. R Bostrom, G Gustafsson, B Holback, G Holmgren, H Koskinen and P Kintner Phys. Rev. Lett. 61 82 (1988)

  34. R A Cairns, R Bingham, R O Dendy, C M C Nairn and R Bostrom Geophys. Res. Lett. 22 2709 (1995)

    Article  ADS  Google Scholar 

  35. M Salahuddin, H Saleem and M Saddiq Phys. Rev. E 66 036407 (2002)

  36. A S Bains N S Saini and T S Gill Astrophys. Space Sci. 343 293 (2013)

    Article  ADS  Google Scholar 

  37. T K Balaku and M A Helberg Plasma Phys. Control Fusion 53 095007 (2011)

    Article  ADS  Google Scholar 

  38. B Ghosh and S Banerjee Int. J. Math. Comp. Phys. Quantum Eng. 8 684 (2014)

  39. B Ghosh and S Banerjee J. Astrophys. 2014 Art ID 785670 (2014)

  40. H R Pakzad Astrophys. Space Sci. 323 345 (2009)

    Article  MATH  ADS  Google Scholar 

  41. G Williams and I Kourakis Phys. Plasma 20 122311 (2013)

    Article  ADS  Google Scholar 

  42. K Arshad, M Arshad and A Rehman Astrophys. Space Sci. 350 585 (2014)

    Article  ADS  Google Scholar 

  43. W M Moslem Phys. Lett. A 351 290 (2006)

    Article  ADS  Google Scholar 

  44. E I El-Awady, S A El-Tantawy, W M Moslem and P K Shukla Phys. Lett. A 374 3216 (2010)

    Article  MATH  ADS  Google Scholar 

  45. H Alinejad and A A Mamun Phys. Plasma 18 112103 (2011)

    Article  ADS  Google Scholar 

  46. D K Ghosh, P Chatterjee, P K Mondal and B Sahu Pramana 81 491 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Ghosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, B., Banerjee, S. Effect of nonthermal electrons and positrons on ion-acoustic solitary waves in a plasma with warm drifting ions. Indian J Phys 89, 1307–1312 (2015). https://doi.org/10.1007/s12648-015-0706-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-015-0706-8

Keywords

PACS Nos.

Navigation