Skip to main content
Log in

Generalized n-locality correlations in tree tensor network configuration

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Quantum correlations in various quantum networks are fundamental for quantum communications, among which Bell nonlocality in networks have already been intensively studied. In this paper, Bell nonlocality for the tree tensor network are discussed by considering two general cases: One case is that each party of the network performs arbitrary number of binary measurements, while the other case is that four extreme parties perform arbitrary m \((m\ge 2)\) binary measurements and all intermediate parties perform \(2^{m-1}\) binary measurements. For both cases, different n-locality inequalities are established and the corresponding quantum violations are also examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Data Availibility Statement

No data associated in the manuscript.

References

  1. N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, S. Wehner, Bell nonlocality. Rev. Mod. Phys. 86, 419 (2014)

    Article  ADS  Google Scholar 

  2. J.F. Clauser, M.A. Horne, A. Shimony, R.A. Holt, Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969)

    Article  ADS  MATH  Google Scholar 

  3. D. Collins, N. Gisin, N. Linden, S. Massar, S. Popescu, Bell inequalities for arbitrarily high-dimensional systems. Phys. Rev. Lett. 88, 040404 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. L.B. Fu, General correlation functions of the Clauser–Horne–Shimony–Holt inequality for arbitrarily high-dimensional systems. Phys. Rev. Lett. 92, 130404 (2004)

    Article  ADS  Google Scholar 

  5. M.O. Renou, D. Rosset, A. Martin, N. Gisin, On the inequivalence of the CH and CHSH inequalities due to finite statistics. J. Phys. A: Math. Theor. 50, 255301 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. M. Żukowski, Č. Brukner, Bell’s theorem for general \(N\)-qubit states. Phys. Rev. Lett. 88, 210401 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. A. Tavakoli, A. Pozas-Kerstjens, M.X. Luo, M.O. Renou, Bell nonlocality in networks. Rep. Prog. Phys. 85, 056001 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  8. M. Żukowski, A. Zeilinger, M.A. Horne, A.K. Ekert, “Event-Ready-Detectors’’ Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287 (1993)

    Article  ADS  Google Scholar 

  9. C. Branciard, N. Gisin, S. Pironio, Characterizing the nonlocal correlations created via entanglement swapping. Phys. Rev. Lett. 104, 170401 (2010)

    Article  ADS  Google Scholar 

  10. C. Branciard, D. Rosset, N. Gisin, S. Pironio, Bilocal versus nonbilocal correlations in entanglement-swapping experiments. Phys. Rev. A 85, 032119 (2012)

    Article  ADS  Google Scholar 

  11. N. Gisin, Q. Mei, A. Tavakoli, M.O. Renou, N. Brunner, All entangled pure quantum states violate the bilocality inequality. Phys. Rev. A 96, 020304(R) (2017)

    Article  ADS  MathSciNet  Google Scholar 

  12. F. Andreoli, G. Carvacho, L. Santodonato, R. Chaves, F. Sciarrino, Maximal qubit violation of \(n\)-locality inequalities in a star-shaped quantum network. New J. Phys. 19, 113020 (2017)

    Article  ADS  MATH  Google Scholar 

  13. K. Mukherjee, B. Paul, D. Sarkar, Correlations in \(n\)-local scenario. Quantum Inf. Process. 14, 2025 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. R. Kumar and A. K. Pan. Generalized \(n\)-locality inequalities in linear-chain network for arbitrary inputs scenario and their quantum violations. Ann. Phys. 2200182 (2022)

  15. A. Kundu, M.K. Molla, I. Chattopadhyay, D. Sarkar, Maximal qubit violation of \(n\)-local inequalities in a quantum network. Phys. Rev. A 102, 052222 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  16. A. Tavakoli, P. Skrzypczyk, D. Cavalcanti, A. Acín, Nonlocal correlations in the star-network configuration. Phys. Rev. A 90, 062109 (2014)

    Article  ADS  Google Scholar 

  17. A. Tavakoli, Quantum correlations in connected multipartite Bell experiments. J. Phys. A: Math. Theor. 49, 145304 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. M.X. Luo, Computationally efficient nonlinear Bell inequalities for quantum networks. Phys. Rev. Lett. 120, 140402 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  19. M.X. Luo, Nonlocality of all quantum networks. Phys. Rev. A 98, 042317 (2018)

    Article  ADS  Google Scholar 

  20. K. Mukherjee, B. Paul, D. Sarkar, Nontrilocality: exploiting nonlocality from three-particle systems. Phys. Rev. A 96, 022103 (2017)

    Article  ADS  Google Scholar 

  21. K. Mukherjee, B. Paul, A. Roy, Characterizing quantum correlations in a fixed-input \(n\)-local network scenario. Phys. Rev. A 101, 032328 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  22. N. Gisin, J.-D. Bancal, Y. Cai, P. Remy, A. Tavakoli, E.Z. Cruzeiro, S. Popescu, N. Brunner, Constraints on nonlocality in networks from no-signaling and independence. Nat. Commun. 11, 2378 (2020)

    Article  ADS  Google Scholar 

  23. L.H. Yang, X.F. Qi, J.C. Hou, Nonlocal correlations in the tree-tensor-network configuration. Phys. Rev. A 104, 042405 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  24. A. Tavakoli, N. Gisin, C. Branciard, Bilocal Bell inequalities violated by the quantum elegant joint measurement. Phys. Rev. Lett. 126, 220401 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  25. J.D. Bancal, N. Gisin, Nonlocal boxes for networks. Phys. Rev. A 104, 052212 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  26. A. Pozas-Kerstjens, N. Gisin, A. Tavakoli, Full network nonlocality. Phys. Rev. Lett. 128, 010403 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  27. M.O. Renou, S. Beigi, Nonlocality for generic networks. Phys. Rev. Lett. 128, 060401 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  28. Y.L. Mao, Z.D. Li, S.X. Yu, J.Y. Fan, Test of genuine multipartite nonlocality. Phys. Rev. Lett. 129, 150401 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  29. I. Šupić, J.D. Bancal, Y. Cai, N. Brunner, Genuine network quantum nonlocality and self-testing. Phys. Rev. A 105, 022206 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  30. S. Sasmal, S.S. Mahato, A.K. Pan, Nonlocal correlations in an asymmetric quantum network. Phys. Rev. A 107, 022425 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  31. A. Pozas-Kerstjens, N. Gisin, M.O. Renou, Proofs of network quantum nonlocality in continuous families of distributions. Phys. Rev. Lett. 130, 090201 (2023)

    Article  ADS  MathSciNet  Google Scholar 

  32. Y.Y. Shi, L.M. Duan, G. Vidal, Classical simulation of quantum many-body systems with a tree tensor network. Phys. Rev. A 74, 022320 (2006)

    Article  ADS  Google Scholar 

  33. Y.Y. Gu, J.T. Sun, A tree-like complex network model. Phys. A 389, 171 (2010)

    Article  Google Scholar 

  34. D. Nagaj, E. Farhi, J. Goldstone, P. Shor, I. Sylvester, Quantum transverse-field Ising model on an infinite tree from matirx product states. Phys. Rev. B 77, 214431 (2008)

    Article  ADS  Google Scholar 

  35. V. Murg, F. Verstraete, Ö. Legeza, R.M. Noack, Simulating strongly correlated quantum systems with tree tensor networks. Phys. Rev. B 82, 205105 (2010)

    Article  ADS  Google Scholar 

  36. L. Masanes, S. Pironio, A. Acín, Secure device-independent quantum key distribution with causally independent measurement devices. Nat. Commun. 2, 238 (2011)

    Article  ADS  Google Scholar 

  37. J.R. Gonzales-Ureta, A. Predojević, A. Cabello, Device-independent quantum key distribution based on Bell inequalities with more than two inputs and two outputs. Phys. Rev. A 103, 052436 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  38. B.S. Cirel’son, Quantum generalizations of Bell’s inequality. Lett. Math. Phys. 4, 93 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  39. P.M. Pearle, Hidden-variable example based upon data rejection. Phys. Rev. D 2, 1418 (1970)

    Article  ADS  Google Scholar 

  40. S.L. Braunstein, C.M. Caves, Wringing out better Bell inequalites. Nucl. Phys. B (Proc. Suppl.) 6, 211 (1989)

    Article  ADS  MATH  Google Scholar 

  41. S.L. Braunstein, C.M. Caves, Bell’s Theorem, Quantum Theory and Conceptions of the Universe, Klumer, Dordrecht, 1989, p.27

  42. S.L. Braunstein, C.M. Caves, Wringing out better Bell inequalites. Ann. Phys. 202, 22 (1990)

    Article  ADS  MATH  Google Scholar 

  43. A. Peres, Quantum Theory: Concepts and Methods, Kluwer Academic Publishers, Dordrecht, 1993

    MATH  Google Scholar 

  44. S. Wehner, Tsirelson bounds for generalized Clauser–Horne–Shimony–Holt inequalities. Phys. Rev. A 73, 022110 (2006)

    Article  ADS  Google Scholar 

  45. S. Ghorai, A.K. Pan, Optimal quantum preparation contextuality in an \(n\)-bit parity-oblivious multiplexing task. Phys. Rev. A 98, 032110 (2018)

    Article  ADS  Google Scholar 

  46. A. Ambainis, D. Leung, L. Mancinska, M. Ozols, Quantum random access codes with shared randomness. arXiv:0810.2937v3

  47. A.K. Pan, S.S. Mahato, Device-independent certification of the Hilbert-space dimension using a family of Bell expressions. Phys. Rev. A 102, 052221 (2020)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Funding

The authors wish to give their thanks to the referee(s) for their helpful comments to improve the paper. This work is partially supported by National Natural Science Foundation of China (12171290, 12071336), and Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province (2022L485).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofei Qi.

Appendix

Appendix

Proof of Theorem 1

For any \(x, y_1,y_2, z_1, \ldots , z_{4}\), we have

$$\begin{aligned} & \langle A_{x} B_{1,y_1} B_{2,y_2} C_{1,z_1} C_{2,z_2} C_{3,z_3} C_{4,z_4}\rangle \\ &\quad= \sum \limits _{a, b_1,b_2, c_1,c_2, c_3, c_{4}} (-1)^{a+ b_1+ b_2+ c_1+c_2+c_3+ c_4} P(a, b_1,b_2, c_1,c_2, c_3, c_{4} | x, y_1,y_2, z_1, z_2, z_3, z_{4})\\ &\quad= \sum \limits _{a, b_1,b_2, c_1,c_2, c_3, c_{4}} (-1)^{a+ b_1+ b_2+ c_1+c_2+ c_3+ c_4} \int \cdots \int \text{d}\lambda _1 \cdots \text{d}\lambda _{6} P_1(\lambda _1) \cdots P_6(\lambda _6) P(a|x, \lambda _1,\lambda _2) P(b_1|y_1, \lambda _1, \lambda _3, \lambda _4)\\ &\quad \cdot P(b_2|y_2, \lambda _2, \lambda _5, \lambda _6) P(c_1|z_1, \lambda _{3}) P(c_2|z_2, \lambda _{4}) P(c_3|z_3, \lambda _{5}) P(c_4|z_4, \lambda _{6})\\ &\quad= \int \cdots \int \text{d}\lambda _1 \cdots \text{d}\lambda _{6} P_1(\lambda _1) \cdots P_6(\lambda _6) \left[\sum \limits _{a} (-1)^{a} P(a|x, \lambda _1, \lambda _2)\right] \left[\sum \limits _{b_1} (-1)^{b_1} P(b_1|y_1, \lambda _1, \lambda _3, \lambda _4)\right]\\ &\quad \cdot \left[\sum \limits _{b_2} (-1)^{b_2} P(b_2|y_2, \lambda _2, \lambda _5, \lambda _6)\right] \left[\sum \limits _{c_1} (-1)^{c_1} P(c_1|z_1, \lambda _{3})\right] \left[\sum \limits _{c_2} (-1)^{c_2} P(c_2|z_2, \lambda _{4})\right]\\ &\quad \cdot \left[\sum \limits _{c_3} (-1)^{c_3} P(c_3|z_3, \lambda _{5})\right] \left[\sum \limits _{c_4} (-1)^{c_4} P(c_4|z_4, \lambda _{6})\right]\\ &\quad= \int \cdots \int \text{d}\lambda _1 \cdots \text{d}\lambda _{6} P_1(\lambda _1) \cdots P_6(\lambda _6) \langle A_{x}\rangle _{\lambda _1, \lambda _2} \langle B_{1,y_1}\rangle _{\lambda _1, \lambda _3, \lambda _4} \langle B_{2,y_2}\rangle _{\lambda _{2}, \lambda _5, \lambda _6} \langle C_{1,z_{1}}\rangle _{\lambda _3} \langle C_{2,z_{2}}\rangle _{\lambda _4} \langle C_{3,z_{3}}\rangle _{\lambda _5} \langle C_{4,z_{4}}\rangle _{\lambda _6}, \end{aligned}$$

where

$$\begin{aligned} {\left\{ \begin{array}{ll}&\langle A_{x}\rangle _{\lambda _1, \lambda _2} = \sum \limits _{a} (-1)^{a} P(a|x, \lambda _1, \lambda _2),\\ &\langle B_{1,y_1}\rangle _{\lambda _1, \lambda _3, \lambda _4} = \sum \limits _{b_1} (-1)^{b_1} P(b_1|y_1, \lambda _1, \lambda _3, \lambda _4),\ \langle B_{2,y_2}\rangle _{\lambda _{2}, \lambda _5, \lambda _6} = \sum \limits _{b_2} (-1)^{b_2} P(b_2|y_2, \lambda _2, \lambda _5, \lambda _6),\\ &\langle C_{1,z_{1}}\rangle _{\lambda _3} = \sum \limits _{c_1} (-1)^{c_1} P(c_1|z_1, \lambda _{3}),\ \langle C_{2,z_{2}}\rangle _{\lambda _4} = \sum \limits _{c_2} (-1)^{c_2} P(c_2|z_2, \lambda _{4}),\\ &\langle C_{3,z_{3}}\rangle _{\lambda _5} = \sum \limits _{c_3} (-1)^{c_3} P(c_3|z_3, \lambda _{5}),\ \langle C_{4,z_{4}}\rangle _{\lambda _6} = \sum \limits _{c_4} (-1)^{c_4} P(c_4|z_4, \lambda _{6}).\end{array}\right. } \end{aligned}$$

Consequently, for any \(j\in \{1,\ldots , m\}\), we get

$$\begin{aligned} \begin{array}{rl} K_{m,j}=& \langle A_{j} B_{1,j} B_{2,j} (C_{1,j}+ C_{1,j+1}) (C_{2,j}+ C_{2,j+1}) (C_{3,j}+ C_{3,j+1}) (C_{4,j}+ C_{4,j+1})\rangle \\ =& \int \cdots \int \text{d}\lambda _1 \cdots \text{d}\lambda _{6} P_1(\lambda _1) \cdots P_6(\lambda _6) \langle A_{j}\rangle _{\lambda _1, \lambda _2} \langle B_{1,j}\rangle _{\lambda _1, \lambda _3, \lambda _4} \langle B_{2,j}\rangle _{\lambda _{2}, \lambda _5, \lambda _6} \left(\langle C_{1,j}\rangle _{\lambda _3} + \langle C_{1,j+1}\rangle _{\lambda _3} \right)\\ & \cdot \left(\langle C_{2,j}\rangle _{\lambda _4} + \langle C_{2,j+1}\rangle _{\lambda _4}\right) \left(\langle C_{3,j}\rangle _{\lambda _5} + \langle C_{3,j+1}\rangle _{\lambda _5}\right) \left(\langle C_{4,j}\rangle _{\lambda _6} + \langle C_{4,j+1}\rangle _{\lambda _6}\right). \end{array} \end{aligned}$$

This implies

$$\begin{aligned} \begin{array}{rl} &|K_{m,j}|\\ \le & \int \cdots \int \text{d}\lambda _1 \cdots \text{d}\lambda _{6} P_1(\lambda _1) \cdots P_6(\lambda _6) |\langle A_{j}\rangle _{\lambda _1, \lambda _2}| |\langle B_{1,j}\rangle _{\lambda _1, \lambda _3, \lambda _4}| |\langle B_{2,j}\rangle _{\lambda _{2}, \lambda _5, \lambda _6}| |\langle C_{1,j}\rangle _{\lambda _3} + \langle C_{1,j+1}\rangle _{\lambda _3}|\\ & \cdot |\langle C_{2,j}\rangle _{\lambda _4} + \langle C_{2,j+1}\rangle _{\lambda _4}| |\langle C_{3,j}\rangle _{\lambda _5} + \langle C_{3,j+1}\rangle _{\lambda _5}| |\langle C_{4,j}\rangle _{\lambda _6} + \langle C_{4,j+1}\rangle _{\lambda _6}|\\ \le & \int \cdots \int \text{d}\lambda _1 \cdots \text{d}\lambda _{6} P_1(\lambda _1) \cdots P_6(\lambda _6) |\langle C_{1,j}\rangle _{\lambda _3} + \langle C_{1,j+1}\rangle _{\lambda _3}| |\langle C_{2,j}\rangle _{\lambda _4} + \langle C_{2,j+1}\rangle _{\lambda _4}|\\ & \cdot |\langle C_{3,j}\rangle _{\lambda _5} + \langle C_{3,j+1}\rangle _{\lambda _5}| |\langle C_{4,j}\rangle _{\lambda _6} + \langle C_{4,j+1}\rangle _{\lambda _6}|\\ =& \left(\int \text{d}\lambda _3 P_3(\lambda _3) |\langle C_{1,j}\rangle _{\lambda _3}+ \langle C_{1,j+1}\rangle _{\lambda _3}|\right)\cdot \left(\int \text{d}\lambda _4 P_4(\lambda _4) |\langle C_{2,j}\rangle _{\lambda _4}+ \langle C_{2,j+1}\rangle _{\lambda _4}|\right)\\ & \cdot \left(\int \text{d}\lambda _5 P_5(\lambda _5) |\langle C_{3,j}\rangle _{\lambda _5}+ \langle C_{3,j+1}\rangle _{\lambda _5}|\right)\cdot \left(\int \text{d}\lambda _6 P_6(\lambda _6) |\langle C_{4,j}\rangle _{\lambda _6}+ \langle C_{4,j+1}\rangle _{\lambda _6}|\right), \end{array} \end{aligned}$$

where the second inequality follows from the facts that

$$\begin{aligned} |\langle A_{j}\rangle _{\lambda _1, \lambda _2}| \le 1,\ \ |\langle B_{1,j}\rangle _{\lambda _{1}, \lambda _3, \lambda _4}| \le 1,\ \ |\langle B_{2,j}\rangle _{\lambda _{2}, \lambda _5, \lambda _6}| \le 1. \end{aligned}$$

Since inequality \(\sum \limits _{k=1}^s (\prod \limits _{i=1}^t x_{i}^k)^{\frac{1}{t}} \le \prod \limits _{i=1}^t (\sum \limits _{k=1}^s x_{i}^k )^{\frac{1}{t}}\) holds for any \(x_i^k \ge 0\) (for example, see [16]), we can obtain that

$$\begin{aligned} \begin{array}{rl} & \sum \limits _{j=1}^{m} |K_{m,j}|^{\frac{1}{4}}\\ \le & \sum \limits _{j=1}^{m} \left[\left(\int \text{d}\lambda _3 P_3(\lambda _3) |\langle C_{1,j}\rangle _{\lambda _3}+ \langle C_{1,j+1}\rangle _{\lambda _3}|\right)\cdot \left(\int \text{d}\lambda _4 P_4(\lambda _4) |\langle C_{2,j}\rangle _{\lambda _4}+ \langle C_{2,j+1}\rangle _{\lambda _4}|\right)\right.\\ &\left. \cdot \left(\int \text{d}\lambda _5 P_5(\lambda _5) |\langle C_{3,j}\rangle _{\lambda _5}+ \langle C_{3,j+1}\rangle _{\lambda _5}|\right)\cdot \left(\int \text{d}\lambda _6 P_6(\lambda _6) |\langle C_{4,j}\rangle _{\lambda _6}+ \langle C_{4,j+1}\rangle _{\lambda _6}|\right)\right]^{\frac{1}{4}}\\ \le & \left(\int \text{d}\lambda _3 P_3(\lambda _3) \sum \limits _{j=1}^{m} |\langle C_{1,j}\rangle _{\lambda _3}+ \langle C_{1,j+1}\rangle _{\lambda _3}|\right)^{\frac{1}{4}} \cdot \left(\int \text{d}\lambda _4 P_4(\lambda _4) \sum \limits _{j=1}^{m} |\langle C_{2,j}\rangle _{\lambda _4}+ \langle C_{2,j+1}\rangle _{\lambda _4}|\right)^{\frac{1}{4}}\\ & \cdot \left(\int \text{d}\lambda _5 P_5(\lambda _5) \sum \limits _{j=1}^{m} |\langle C_{3,j}\rangle _{\lambda _5}+ \langle C_{3,j+1}\rangle _{\lambda _5}|\right)^{\frac{1}{4}} \cdot \left(\int \text{d}\lambda _6 P_6(\lambda _6) \sum \limits _{j=1}^{m} |\langle C_{4,j}\rangle _{\lambda _6}+ \langle C_{4,j+1}\rangle _{\lambda _6}|\right)^{\frac{1}{4}}. \end{array} \end{aligned}$$

Let us consider the expression \(\sum \limits _{j=1}^{m} |\langle C_{1,j}\rangle _{\lambda _3}+ \langle C_{1,j+1}\rangle _{\lambda _3}|\) firstly. Since

$$\begin{aligned} \begin{array}{rl} & |\langle C_{1,m}\rangle _{\lambda _3}- \langle C_{1,1}\rangle _{\lambda _3}| = |\langle C_{1,1}\rangle _{\lambda _3}- \langle C_{1,m}\rangle _{\lambda _3}|\\ \le & |\langle C_{1,1}\rangle _{\lambda _3}- \langle C_{1,2}\rangle _{\lambda _3}|+ |\langle C_{1,2}\rangle _{\lambda _3}- \langle C_{1,m}\rangle _{\lambda _3}|\\ \le & |\langle C_{1,1}\rangle _{\lambda _3}- \langle C_{1,2}\rangle _{\lambda _3}|+ |\langle C_{1,2}\rangle _{\lambda _3}- \langle C_{1,3}\rangle _{\lambda _3}|+ |\langle C_{1,3}\rangle _{\lambda _3}- \langle C_{1,m}\rangle _{\lambda _3}|\\ & \cdots \\ \le & |\langle C_{1,1}\rangle _{\lambda _3}- \langle C_{1,2}\rangle _{\lambda _3}|+ |\langle C_{1,2}\rangle _{\lambda _3}- \langle C_{1,3}\rangle _{\lambda _3}|+ \cdots + |\langle C_{1,m-1}\rangle _{\lambda _3}- \langle C_{1,m}\rangle _{\lambda _3}|, \end{array} \end{aligned}$$

it follows that

$$\begin{aligned} & \sum \limits _{j=1}^{m} |\langle C_{1,j}\rangle _{\lambda _3}+ \langle C_{1,j+1}\rangle _{\lambda _3}|\\ =& |\langle C_{1,1}\rangle _{\lambda _3}+ \langle C_{1,2}\rangle _{\lambda _3}|+ |\langle C_{1,2}\rangle _{\lambda _3}+ \langle C_{1,3}\rangle _{\lambda _3}|+ \cdots + |\langle C_{1,m-1}\rangle _{\lambda _3}+ \langle C_{1,m}\rangle _{\lambda _3}|+ |\langle C_{1,m}\rangle _{\lambda _3}- \langle C_{1,1}\rangle _{\lambda _3}|\\ \le & |\langle C_{1,1}\rangle _{\lambda _3}+ \langle C_{1,2}\rangle _{\lambda _3}|+ |\langle C_{1,2}\rangle _{\lambda _3}+ \langle C_{1,3}\rangle _{\lambda _3}|+ \cdots + |\langle C_{1,m-1}\rangle _{\lambda _3}+ \langle C_{1,m}\rangle _{\lambda _3}|\\ & + |\langle C_{1,1}\rangle _{\lambda _3}- \langle C_{1,2}\rangle _{\lambda _3}|+ |\langle C_{1,2}\rangle _{\lambda _3}- \langle C_{1,3}\rangle _{\lambda _3}|+ \cdots + |\langle C_{1,m-1}\rangle _{\lambda _3}- \langle C_{1,m}\rangle _{\lambda _3}|\\ =& (|\langle C_{1,1}\rangle _{\lambda _3}+ \langle C_{1,2}\rangle _{\lambda _3}|+ |\langle C_{1,1}\rangle _{\lambda _3}- \langle C_{1,2}\rangle _{\lambda _3}|)+ (|\langle C_{1,2}\rangle _{\lambda _3}+ \langle C_{1,3}\rangle _{\lambda _3}|+ |\langle C_{1,2}\rangle _{\lambda _3}- \langle C_{1,3}\rangle _{\lambda _3}|)+ \cdots \\ & +(|\langle C_{1,m-1}\rangle _{\lambda _3}+ \langle C_{1,m}\rangle _{\lambda _3}|+ |\langle C_{1,m-1}\rangle _{\lambda _3}- \langle C_{1,m}\rangle _{\lambda _3}|)\\ =& 2\max \{|\langle C_{1,1}\rangle _{\lambda _3}|, |\langle C_{1,2}\rangle _{\lambda _3}|\}+ 2\max \{|\langle C_{1,2}\rangle _{\lambda _3}|, |\langle C_{1,3}\rangle _{\lambda _3}|\}+ \cdots + 2\max \{|\langle C_{1,m-1}\rangle _{\lambda _3}|, |\langle C_{1,m}\rangle _{\lambda _3}|\}\\ \le & 2(m-1)= 2m-2, \end{aligned}$$

where the last inequality is due to \(|\langle C_{1,j}\rangle _{\lambda _3}| \le 1\) for all \(j\in \{1,\ldots ,m\}\).

Similarly, we can also get

$$\begin{aligned} \sum \limits _{j=1}^{m} |\langle C_{2,j}\rangle _{\lambda _4}+ \langle C_{2,j+1}\rangle _{\lambda _4}| \le 2m-2,\ \ \sum \limits _{j=1}^{m} |\langle C_{3,j}\rangle _{\lambda _5}+ \langle C_{3,j+1}\rangle _{\lambda _5}| \le 2m-2 \end{aligned}$$

and

$$\begin{aligned} \sum \limits _{j=1}^{m} |\langle C_{4,j}\rangle _{\lambda _6}+ \langle C_{4,j+1}\rangle _{\lambda _6}| \le 2m-2. \end{aligned}$$

Therefore, \(\sum \limits _{j=1}^{m} |K_{m,j}|^{\frac{1}{4}} \le 2\,m-2\). The proof is finished.□

Proof of Inequality (8). For any \(x,y_1, y_2,z_1,\ldots , z_4\), we have

$$\begin{aligned} \begin{array}{rl} & \langle A_{x} B_{1,y_1} B_{2,y_2} C_{1,z_1} C_{2,z_2} C_{3,z_3} C_{4,z_4}\rangle \\ =& \sum \limits _{a, b_1,b_2, c_1,\ldots , c_{4}} (-1)^{a+ b_1+ b_2+ c_1+\cdots + c_4} P(a, b_1,b_2, c_1,\ldots , c_{4} | x, y_1,y_2, z_1, \ldots , z_{4})\\ =& \sum \limits _{a, b_1,b_2, c_1,\ldots , c_{4}} (-1)^{a+ b_1+ b_2+ c_1+\cdots + c_4} \text{Tr}\left[\left(M_{a|x} \otimes M_{b_1|y_1} \otimes M_{b_2|y_2} \otimes M_{c_1|z_1} \otimes \cdots \otimes M_{c_{4}|z_{4}}\right)\rho \right]\\ =& \text{Tr}\left\{\left[\left(\sum \limits _{a} (-1)^{a} M_{a|x}\right) \otimes \left(\sum \limits _{b_1} (-1)^{b_1} M_{b_1|y_1}\right) \otimes \left(\sum \limits _{b_2} (-1)^{b_2} M_{b_2|y_2}\right) \otimes \left(\sum \limits _{c_1} (-1)^{c_1} M_{c_1|z_1}\right) \otimes \cdots \right.\right.\\ &\left.\left.\otimes \left(\sum \limits _{c_4} (-1)^{c_4} M_{c_4|z_4}\right)\right]\rho \right\}\\ =& \text{Tr}[(A_{x} \otimes B_{1,y_1} \otimes B_{2,y_2} \otimes C_{1,z_1} \otimes \cdots \otimes C_{4,z_4})\rho ]. \end{array} \end{aligned}$$
(15)

Consider the case of pure quantum state, i.e., \(\rho = |\psi \rangle \langle \psi |\) with

$$\begin{aligned} |\psi \rangle = |\psi \rangle _{AB_1} \otimes |\psi \rangle _{AB_2} \otimes |\psi \rangle _{B_1C_1} \otimes |\psi \rangle _{B_1C_2} \otimes |\psi \rangle _{B_2C_3} \otimes |\psi \rangle _{B_2C_4}. \end{aligned}$$

From the definition, we have

$$\begin{aligned} \begin{array}{ll} & \sum \limits _{j=1}^{m} |K_{m,j}|^{\frac{1}{4}}\\ &\quad = \sum \limits _{j=1}^{m} |\langle A_{j} \otimes B_{1,j}\otimes B_{2,j}\otimes (C_{1,j}+ C_{1,j+1})\otimes (C_{2,j}+ C_{2,j+1})\otimes (C_{3,j}+ C_{3,j+1})\otimes (C_{4,j}+ C_{4,j+1})\rangle |^{\frac{1}{4}}\\ &\quad = \sum \limits _{j=1}^{m} |\text{Tr}\{[A_{j}\otimes B_{1,j}\otimes B_{2,j}\otimes (C_{1,j}+ C_{1,j+1})\otimes (C_{2,j}+ C_{2,j+1})\otimes (C_{3,j}+ C_{3,j+1})\otimes (C_{4,j}+ C_{4,j+1})]|\psi \rangle \langle \psi |\} |^{\frac{1}{4}}\\ &\quad = \sum \limits _{j=1}^{m} |\langle \psi | [A_{j}\otimes B_{1,j}\otimes B_{2,j}\otimes (C_{1,j}+ C_{1,j+1})\otimes (C_{2,j}+ C_{2,j+1})\otimes (C_{3,j}+ C_{3,j+1})\otimes (C_{4,j}+ C_{4,j+1})]|\psi \rangle |^{\frac{1}{4}}\\&\quad = \sum \limits _{j=1}^{m} |\langle \psi | (A_{j}\otimes B_{1,j}\otimes B_{2,j}\otimes I^{C_1}\otimes I^{C_2}\otimes I^{C_3}\otimes I^{C_{4}})\\ &\quad \cdot [I^{A} \otimes I^{B_{1}} \otimes I^{B_{2}} \otimes (C_{1,j}+ C_{1,j+1})\otimes (C_{2,j}+ C_{2,j+1})\otimes (C_{3,j}+ C_{3,j+1})\otimes (C_{4,j}+ C_{4,j+1})]|\psi \rangle |^{\frac{1}{4}}\\ &\quad \le \sum \limits _{j=1}^{m} [\langle \psi | (A_{j}\otimes B_{1,j}\otimes B_{2,j}\otimes I^{C_1}\otimes I^{C_2}\otimes I^{C_3}\otimes I^{C_{4}})^2 |\psi \rangle ]^{\frac{1}{8}}\\ &\quad \cdot \{\langle \psi | [I^{A} \otimes I^{B_{1}} \otimes I^{B_{2}} \otimes (C_{1,j}+ C_{1,j+1})\otimes (C_{2,j}+ C_{2,j+1})\otimes (C_{3,j}+ C_{3,j+1})\otimes (C_{4,j}+ C_{4,j+1})]^2 |\psi \rangle \}^{\frac{1}{8}}\\&\quad = \sum \limits _{j=1}^{m} \{\langle \psi | [I^{A} \otimes I^{B_{1}} \otimes I^{B_{2}} \otimes (C_{1,j}+ C_{1,j+1})\otimes (C_{2,j}+ C_{2,j+1})\otimes (C_{3,j}+ C_{3,j+1})\otimes (C_{4,j}+ C_{4,j+1})]^2 |\psi \rangle \}^{\frac{1}{8}}\\ &\quad = \sum \limits _{j=1}^{m} \{\langle \psi | [I^{A} \otimes I^{B_{1}} \otimes I^{B_{2}} \otimes (C_{1,j}+ C_{1,j+1})^2\otimes (C_{2,j}+ C_{2,j+1})^2\otimes (C_{3,j}+ C_{3,j+1})^2\otimes (C_{4,j}+ C_{4,j+1})^2] |\psi \rangle \}^{\frac{1}{8}}, \end{array} \end{aligned}$$

where the inequality is due to Cauchy-Schwarz inequality \(|\langle v|w\rangle |^2 \le \langle v|v\rangle \langle w|w\rangle\) with the equality holding if and only if \(|v\rangle = \alpha |w\rangle\) for some scalar \(\alpha\), and the fifth equality follows from the facts \(A_{j}^2= B_{1,j}^2= B_{2,j}^2= I\) for \(j=1,\ldots ,m\). Note that, for any \(j\in \{1,\ldots , m\}\), it is true that

$$\begin{aligned} \begin{array}{rl} & \langle \psi | [I^{A} \otimes I^{B_{1}} \otimes I^{B_{2}} \otimes (C_{1,j}+ C_{1,j+1})^2\otimes (C_{2,j}+ C_{2,j+1})^2\otimes (C_{3,j}+ C_{3,j+1})^2\otimes (C_{4,j}+ C_{4,j+1})^2] |\psi \rangle \\ =& \langle \psi |_{B_1C_1} (C_{1,j}+C_{1,j+1})^2 |\psi \rangle _{B_1C_1} \langle \psi |_{B_1C_2} (C_{2,j}+ C_{2,j+1})^2 |\psi \rangle _{B_1C_2}\\ & \cdot \langle \psi |_{B_2C_3} (C_{3,j}+C_{3,j+1})^2 |\psi \rangle _{B_2C_3} \langle \psi |_{B_2C_4} (C_{4,j}+ C_{4,j+1})^2 |\psi \rangle _{B_2C_4}\\ =& \Vert (C_{1,j}+C_{1,j+1}) |\psi \rangle _{B_1C_1}\Vert ^2 \Vert (C_{2,j}+C_{2,j+1}) |\psi \rangle _{B_1C_2}\Vert ^2\Vert (C_{3,j}+C_{3,j+1}) |\psi \rangle _{B_2C_3}\Vert ^2 \Vert (C_{4,j}+C_{4,j+1}) |\psi \rangle _{B_2C_4}\Vert ^2\\ =& (\nu _{m,j}^1)^2 \cdot (\nu _{m,j}^2)^2 \cdot (\nu _{m,j}^3)^2 \cdot (\nu _{m,j}^4)^2, \end{array} \end{aligned}$$

where

$$\begin{aligned} \nu _{m,j}^1= & \Vert (C_{1,j}+ C_{1,j+1}) |\psi \rangle _{B_1C_1} \Vert ,\ \ \ \ \nu _{m,j}^2= \Vert (C_{2,j}+ C_{2,j+1}) |\psi \rangle _{B_1C_2} \Vert ,\\ \nu _{m,j}^3= & \Vert (C_{3,j}+ C_{3,j+1}) |\psi \rangle _{B_2C_3} \Vert ,\ \ \ \ \nu _{m,j}^4= \Vert (C_{4,j}+ C_{4,j+1}) |\psi \rangle _{B_2C_4} \Vert . \end{aligned}$$

Consequently,

$$\begin{aligned} \begin{array}{rl} \sum \limits _{j=1}^{m} |K_{m,j}|^{\frac{1}{4}} \le & \sum \limits _{j=1}^{m} \left[(\nu _{m,j}^1)^2 \cdot (\nu _{m,j}^2)^2 \cdot (\nu _{m,j}^3)^2 \cdot (\nu _{m,j}^4)^2\right]^{\frac{1}{8}}\\ =& \sum \limits _{j=1}^{m} \left[(\nu _{m,j}^1) \cdot (\nu _{m,j}^2) \cdot (\nu _{m,j}^3) \cdot (\nu _{m,j}^4)\right]^{\frac{1}{4}}\\ \le & \left[\sum \limits _{j=1}^{m} (\nu _{m,j}^1)\right]^{\frac{1}{4}} \cdot \left[\sum \limits _{j=1}^{m} (\nu _{m,j}^2)\right]^{\frac{1}{4}} \cdot \left[\sum \limits _{j=1}^{m} (\nu _{m,j}^3)\right]^{\frac{1}{4}} \cdot \left[\sum \limits _{j=1}^{m} (\nu _{m,j}^4)\right]^{\frac{1}{4}}\\ \le & 2m \cos (\frac{\pi }{2m}), \end{array} \end{aligned}$$

where the second inequality follows from \(\sum \limits _{k=1}^s (\prod \limits _{i=1}^t x_{i}^k)^{\frac{1}{t}} \le \prod \limits _{i=1}^t (\sum \limits _{k=1}^s x_{i}^k )^{\frac{1}{t}}\) \((\forall x_i^k \ge 0)\) with the equality holding if and only if \(x_{1}^k=\cdots = x_{t}^k\), and the last inequality is due to \(\sum \limits _{j=1}^{m} (\nu _{m,j}^{i})\le 2m \cos (\frac{\pi }{2m})\) \((i=1,2,3,4)\).□

Proof of Theorem 2

Assume \(\rho _{AB_1}= \sum \limits _u p_u^{AB_1} \rho _u^A\otimes \rho _u^{B_1}\), \(\rho _{AB_2}= \sum \limits _v p_v^{AB_2} \rho _v^A\otimes \rho _v^{B_2}\), \(\rho _{B_1C_1}= \sum \limits _w p_w^{B_1C_1} \rho _w^{B_1}\otimes \rho _w^{C_1}\), \(\rho _{B_1C_2}= \sum \limits _r p_r^{B_1C_2} \rho _r^{B_1}\otimes \rho _r^{C_2}\), \(\rho _{B_2C_3}= \sum \limits _s p_s^{B_2C_3} \rho _s^{B_2}\otimes \rho _s^{C_3}\), \(\rho _{B_2C_4}= \sum \limits _t p_t^{B_2C_4} \rho _t^{B_2}\otimes \rho _t^{C_4}\). Then

$$\begin{aligned} \begin{array}{rl} \rho =& \rho _{AB_1} \otimes \rho _{AB_2}\otimes \rho _{B_1C_1} \otimes \rho _{B_1C_2} \otimes \rho _{B_2C_3}\otimes \rho _{B_2C_4}\\ =& \left(\sum \limits _u p_u^{AB_1} \rho _u^A\otimes \rho _u^{B_1}\right)\otimes \left(\sum \limits _v p_v^{AB_2} \rho _v^A\otimes \rho _v^{B_2}\right)\\ & \otimes \left(\sum \limits _w p_w^{B_1C_1} \rho _w^{B_1}\otimes \rho _w^{C_1}\right) \otimes \left(\sum \limits _r p_r^{B_1C_2} \rho _r^{B_1}\otimes \rho _r^{C_2}\right)\\ &\otimes \left(\sum \limits _s p_s^{B_2C_3} \rho _s^{B_2}\otimes \rho _s^{C_3}\right)\otimes \left(\sum \limits _t p_t^{B_2C_4} \rho _t^{B_2}\otimes \rho _t^{C_4}\right)\\ =& \sum \limits _u p_u^{AB_1} \sum \limits _v p_v^{AB_2} \sum \limits _w p_w^{B_1C_1} \sum \limits _r p_r^{B_1C_2} \sum \limits _s p_s^{B_2C_3}\sum \limits _t p_t^{B_2C_4}\\ & (\rho _u^A\otimes \rho _u^{B_1}\otimes \rho _v^A\otimes \rho _v^{B_2} \otimes \rho _w^{B_1}\otimes \rho _w^{C_1}\otimes \rho _r^{B_1}\otimes \rho _r^{C_2}\\ & \otimes \rho _s^{B_2}\otimes \rho _s^{C_3}\otimes \rho _t^{B_2}\otimes \rho _t^{C_4}). \end{array} \end{aligned}$$

From Eq. (15), we have

$$\begin{aligned} \begin{array}{rl} &\langle A_{x} B_{1,y_1} B_{2,y_2} C_{1,z_1} C_{2,z_2} C_{3,z_3} C_{4,z_4}\rangle \\ =& {\rm Tr}[(A_{x} \otimes B_{1,y_1} \otimes B_{2,y_2} \otimes C_{1,z_1} \otimes C_{2,z_2} \otimes C_{3,z_3} \otimes C_{4,z_4})\rho ]\\ =& \sum \limits _u p_u^{AB_1} \sum \limits _v p_v^{AB_2} \sum \limits _w p_w^{B_1C_1} \sum \limits _r p_r^{B_1C_2}\sum \limits _s p_s^{B_2C_3}\sum \limits _t p_t^{B_2C_4}\\ & \{{\rm Tr}[(A_{x} \otimes B_{1,y_1} \otimes B_{2,y_2} \otimes C_{1,z_1} \otimes C_{2,z_2} \otimes C_{3,z_3} \otimes C_{4,z_4})(\rho _u^A\otimes \rho _u^{B_1}\otimes \rho _v^A\otimes \rho _v^{B_2}\\ & \otimes \rho _w^{B_1}\otimes \rho _w^{C_1}\otimes \rho _r^{B_1}\otimes \rho _r^{C_2}\otimes \rho _s^{B_2}\otimes \rho _s^{C_3}\otimes \rho _t^{B_2}\otimes \rho _t^{C_4})]\}\\ =& \sum \limits _u p_u^{AB_1} \sum \limits _v p_v^{AB_2} \sum \limits _w p_w^{B_1C_1} \sum \limits _r p_r^{B_1C_2}\sum \limits _s p_s^{B_2C_3}\sum \limits _t p_t^{B_2C_4}\\ & \{{\rm Tr}[A_{x}(\rho _u^A\otimes \rho _v^A)] \cdot {\rm Tr}[B_{1,y_1}(\rho _u^{B_1}\otimes \rho _w^{B_1}\otimes \rho _r^{B_1})] \cdot {\rm Tr}[B_{2,y_2}(\rho _v^{B_2}\otimes \rho _s^{B_2}\otimes \rho _t^{B_2})]\\ & \cdot {\rm Tr}[C_{1,z_1}(\rho _w^{C_1})] \cdot {\rm Tr}[C_{2,z_2}(\rho _r^{C_2})] \cdot {\rm Tr}[C_{3,z_3}(\rho _s^{C_3})] \cdot {\rm Tr}[C_{4,z_4}(\rho _t^{C_4})]\}. \end{array} \end{aligned}$$

Consequently, for any \(j\in \{1, \ldots ,m\}\),

$$\begin{aligned} \begin{array}{rl} K_{m,j}=& \langle A_{j} B_{1,j} B_{2,j} (C_{1,j}+ C_{1,j+1}) (C_{2,j}+ C_{2,j+1}) (C_{3,j}+ C_{3,j+1}) (C_{4,j}+ C_{4,j+1})\rangle \\ =& \sum \limits _u p_u^{AB_1} \sum \limits _v p_v^{AB_2} \sum \limits _w p_w^{B_1C_1} \sum \limits _r p_r^{B_1C_2}\sum \limits _s p_s^{B_2C_3}\sum \limits _t p_t^{B_2C_4} \{{\rm Tr}[A_{j}(\rho _u^A\otimes \rho _v^A)]\\ & \cdot {\rm Tr}[B_{1,j}(\rho _u^{B_1}\otimes \rho _w^{B_1}\otimes \rho _r^{B_1})] \cdot {\rm Tr}[B_{2,j}(\rho _v^{B_2}\otimes \rho _s^{B_2}\otimes \rho _t^{B_2})] \cdot {\rm Tr}[(C_{1,j}+ C_{1,j+1})(\rho _w^{C_1})]\\ & \cdot {\rm Tr}[(C_{2,j}+ C_{2,j+1})(\rho _r^{C_2})] \cdot {\rm Tr}[(C_{3,j}+ C_{3,j+1})(\rho _s^{C_3})] \cdot {\rm Tr}[(C_{4,j}+ C_{4,j+1})(\rho _t^{C_4})]\}, \end{array} \end{aligned}$$

which implies

$$\begin{aligned} \begin{array}{rl} |K_{m,j}|\le & \sum \limits _u p_u^{AB_1} \sum \limits _v p_v^{AB_2} \sum \limits _w p_w^{B_1C_1} \sum \limits _r p_r^{B_1C_2}\sum \limits _s p_s^{B_2C_3}\sum \limits _t p_t^{B_2C_4} \{|{\rm Tr}[A_{j}(\rho _u^A\otimes \rho _v^A)]|\\ & \cdot |{\rm Tr}[B_{1,j}(\rho _u^{B_1}\otimes \rho _w^{B_1}\otimes \rho _r^{B_1})]| \cdot |{\rm Tr}[B_{2,j}(\rho _v^{B_2}\otimes \rho _s^{B_2}\otimes \rho _t^{B_2})]| \cdot |{\rm Tr}[(C_{1,j}+ C_{1,j+1})(\rho _w^{C_1})]|\\ & \cdot |{\rm Tr}[(C_{2,j}+ C_{2,j+1})(\rho _r^{C_2})]| \cdot |{\rm Tr}[(C_{3,j}+ C_{3,j+1})(\rho _s^{C_3})]| \cdot |{\rm Tr}[(C_{4,j}+ C_{4,j+1})(\rho _t^{C_4})]|\}\\ \le & \sum \limits _u p_u^{AB_1} \sum \limits _v p_v^{AB_2} \sum \limits _w p_w^{B_1C_1} \sum \limits _r p_r^{B_1C_2}\sum \limits _s p_s^{B_2C_3}\sum \limits _t p_t^{B_2C_4}\\ & \{|{\rm Tr}[(C_{1,j}+ C_{1,j+1})(\rho _w^{C_1})]| \cdot |{\rm Tr}[(C_{2,j}+ C_{2,j+1})(\rho _r^{C_2})]|\\ & \cdot |{\rm Tr}[(C_{3,j}+ C_{3,j+1})(\rho _s^{C_3})]| \cdot |{\rm Tr}[(C_{4,j}+ C_{4,j+1})(\rho _t^{C_4})]|\}\\ =& \{\sum \limits _w p_w^{B_1C_1} |{\rm Tr}[(C_{1,j}+ C_{1,j+1})(\rho _w^{C_1})]|\} \cdot \{\sum \limits _r p_r^{B_1C_2} |{\rm Tr}[(C_{2,j}+ C_{2,j+1})(\rho _r^{C_2})]|\}\\ & \cdot \{\sum \limits _s p_s^{B_2C_3} |{\rm Tr}[(C_{3,j}+ C_{3,j+1})(\rho _s^{C_3})]|\} \cdot \{\sum \limits _t p_t^{B_2C_4} |{\rm Tr}[(C_{4,j}+ C_{4,j+1})(\rho _t^{C_4})]|\}, \end{array} \end{aligned}$$

where the second inequality is due to \(|{\rm Tr}[A_{j}(\rho _u^A\otimes \rho _v^A)]|\le \Vert A_{j}\Vert \cdot {\rm Tr}(\rho _u^A\otimes \rho _v^A) \le 1\), \(|{\rm Tr}[B_{1,j}(\rho _u^{B_1}\otimes \rho _w^{B_1}\otimes \rho _r^{B_1})]|\le 1\) and \(|{\rm Tr}[B_{2,j}(\rho _v^{B_2}\otimes \rho _s^{B_2}\otimes \rho _t^{B_2})]|\le 1\). Using inequality \(\sum \limits _{k=1}^s (\prod \limits _{i=1}^t x_{i}^k)^{\frac{1}{t}} \le \prod \limits _{i=1}^t (\sum \limits _{k=1}^s x_{i}^k )^{\frac{1}{t}}\) \((\forall x_i^k \ge 0)\), we get

$$\begin{aligned} \begin{array}{rl} \sum \limits _{j=1}^{m}|K_{m,j}|^{\frac{1}{4}} \le & \left\{\sum \limits _{j=1}^{m}\sum \limits _w p_w^{B_1C_1} |{\rm Tr}\left[(C_{1,j}+ C_{1,j+1})(\rho _w^{C_1})\right]|\right\}^{\frac{1}{4}} \cdot \left\{\sum \limits _{j=1}^{m}\sum \limits _r p_r^{B_1C_2} |{\rm Tr}\left[(C_{2,j}+ C_{2,j+1})(\rho _r^{C_2})\right]|\right\}^{\frac{1}{4}}\\ & \cdot \left\{\sum \limits _{j=1}^{m}\sum \limits _s p_s^{B_2C_3} |{\rm Tr}\left[(C_{3,j}+ C_{3,j+1})(\rho _s^{C_3})\right]|\right\}^{\frac{1}{4}} \cdot \left\{\sum \limits _{j=1}^{m}\sum \limits _t p_t^{B_2C_4} |{\rm Tr}\left[(C_{4,j}+ C_{4,j+1})(\rho _t^{C_4})\right]|\right\}^{\frac{1}{4}}. \end{array} \end{aligned}$$

We firstly consider the term \(\sum \limits _{j=1}^{m}\sum \limits _w p_w^{B_1C_1} |{\rm Tr}[(C_{1,j}+ C_{1,j+1})(\rho _w^{C_1})]|\). Since

$$\begin{aligned} \begin{array}{rl} & \sum \limits _{j=1}^{m} |{\rm Tr}[(C_{1,j}+ C_{1,j+1})(\rho _w^{C_1})]|\\ = & |{\rm Tr}[C_{1,1}(\rho _w^{C_1})]+ {\rm Tr}[C_{1,2}(\rho _w^{C_1})]|+ |{\rm Tr}[C_{1,2}(\rho _w^{C_1})]+ {\rm Tr}[C_{1,3}(\rho _w^{C_1})]|+\cdots \\ & +|{\rm Tr}[C_{1,m-1}(\rho _w^{C_1})]+ {\rm Tr}[C_{1,m}(\rho _w^{C_1})]|+ |{\rm Tr}[C_{1,m}(\rho _w^{C_1})]- {\rm Tr}[C_{1,1}(\rho _w^{C_1})]|\\ \le & |{\rm Tr}[C_{1,1}(\rho _w^{C_1})]+ {\rm Tr}[C_{1,2}(\rho _w^{C_1})]|+ |{\rm Tr}[C_{1,2}(\rho _w^{C_1})]+ {\rm Tr}[C_{1,3}(\rho _w^{C_1})]|+\cdots \\ & +|{\rm Tr}[C_{1,m-1}(\rho _w^{C_1})]+ {\rm Tr}[C_{1,m}(\rho _w^{C_1})]|+ \{|{\rm Tr}[C_{1,1}(\rho _w^{C_1})]- {\rm Tr}[C_{1,2}(\rho _w^{C_1})]|\\ & +|{\rm Tr}[C_{1,2}(\rho _w^{C_1})]- {\rm Tr}[C_{1,3}(\rho _w^{C_1})]|+\cdots +|{\rm Tr}[C_{1,m-1}(\rho _w^{C_1})]- {\rm Tr}[C_{1,m}(\rho _w^{C_1})]|\}\\ =& \{|{\rm Tr}[C_{1,1}(\rho _w^{C_1})]+ {\rm Tr}[C_{1,2}(\rho _w^{C_1})]|+ |{\rm Tr}[C_{1,1}(\rho _w^{C_1})]- {\rm Tr}[C_{1,2}(\rho _w^{C_1})]|\}\\ & +\{|{\rm Tr}[C_{1,2}(\rho _w^{C_1})]+ {\rm Tr}[C_{1,3}(\rho _w^{C_1})]|+ |{\rm Tr}[C_{1,2}(\rho _w^{C_1})]- {\rm Tr}[C_{1,3}(\rho _w^{C_1})]|\}+\cdots \\ & +\{|{\rm Tr}[C_{1,m-1}(\rho _w^{C_1})]+ {\rm Tr}[C_{1,m}(\rho _w^{C_1})]|+ |{\rm Tr}[C_{1,m-1}(\rho _w^{C_1})]- {\rm Tr}[C_{1,m}(\rho _w^{C_1})]|\}\\ =& 2\max \{|{\rm Tr}[C_{1,1}(\rho _w^{C_1})]|, |{\rm Tr}[C_{1,2}(\rho _w^{C_1})]|\}+ 2\max \{|{\rm Tr}[C_{1,2}(\rho _w^{C_1})]|, |{\rm Tr}[C_{1,3}(\rho _w^{C_1})]|\}\\ & +\cdots + 2\max \{|{\rm Tr}[C_{1,m-1}(\rho _w^{C_1})]|, |{\rm Tr}[C_{1,m}(\rho _w^{C_1})]|\}\\ \le & 2(m-1), \end{array}\end{aligned}$$

where the last inequality follows from \(|{\rm Tr}[C_{1,j}(\rho _w^{C_1})]|\le \Vert C_{1,j}\Vert \cdot {\rm Tr}(\rho _w^{C_1}) \le 1\), \(\forall j\in \{1,\ldots , m\}\), then we have

$$\begin{aligned} \begin{array}{rl} &\sum \limits _{j=1}^{m}\sum \limits _w p_w^{B_1C_1} |{\rm Tr}[(C_{1,j}+ C_{1,j+1})(\rho _w^{C_1})]|\\ =& \sum \limits _w p_w^{B_1C_1}\sum \limits _{j=1}^{m} |{\rm Tr}[(C_{1,j}+ C_{1,j+1})(\rho _w^{C_1})]|\le 2(m-1). \end{array} \end{aligned}$$

Similarly, we obtain

$$\begin{aligned} & \sum \limits _{j=1}^{m}\sum \limits _r p_r^{B_1C_2} |{\rm Tr}[(C_{2,j}+ C_{2,j+1})(\rho _r^{C_2})]|\le 2(m-1),\\ & \sum \limits _{j=1}^{m}\sum \limits _s p_s^{B_2C_3} |{\rm Tr}[(C_{3,j}+ C_{3,j+1})(\rho _s^{C_3})]|\le 2(m-1),\\ & \sum \limits _{j=1}^{m}\sum \limits _t p_t^{B_2C_4} |{\rm Tr}[(C_{4,j}+ C_{4,j+1})(\rho _t^{C_4})]|\le 2(m-1). \end{aligned}$$

Therefore, \(\sum \limits _{j=1}^{m}|K_{m,j}|^{\frac{1}{4}}\le 2(m-1)\).□

Proof of Theorem 3

For any \(x, y_1,y_2, z_1, \ldots , z_{4}\), we have

$$\begin{aligned} \begin{array}{rl} & \langle A_{x} B_{1,y_1} B_{2,y_2} C_{1,z_1} C_{2,z_2} C_{3,z_3} C_{4,z_4}\rangle \\ =& \sum \limits _{a, b_1,b_2, c_1,c_2, c_3, c_{4}} (-1)^{a+ b_1+ b_2+ c_1+c_2+ c_3+ c_4} P(a, b_1,b_2, c_1,c_2, c_3, c_{4} | x, y_1,y_2, z_1, z_2, z_3, z_{4})\\ =& \sum \limits _{a, b_1,b_2, c_1,c_2, c_3, c_{4}} (-1)^{a+ b_1+ b_2+ c_1+c_2+ c_3+ c_4} \int \cdots \int \text{d}\lambda _1 \cdots \text{d}\lambda _{6} P_1(\lambda _1) \cdots P_6(\lambda _6) P(a|x, \lambda _1,\lambda _2) P(b_1|y_1, \lambda _1, \lambda _3, \lambda _4)\\ & \cdot P(b_2|y_2, \lambda _2, \lambda _5, \lambda _6) P(c_1|z_1, \lambda _{3}) P(c_2|z_2, \lambda _{4}) P(c_3|z_3, \lambda _{5}) P(c_4|z_4, \lambda _{6})\\ =& \int \cdots \int \text{d}\lambda _1 \cdots \text{d}\lambda _{6} P_1(\lambda _1) \cdots P_6(\lambda _6) [\sum \limits _{a} (-1)^{a} P(a|x, \lambda _1, \lambda _2)] [\sum \limits _{b_1} (-1)^{b_1} P(b_1|y_1, \lambda _1, \lambda _3, \lambda _4)]\\ & \cdot [\sum \limits _{b_2} (-1)^{b_2} P(b_2|y_2, \lambda _2, \lambda _5, \lambda _6)] [\sum \limits _{c_1} (-1)^{c_1} P(c_1|z_1, \lambda _{3})] [\sum \limits _{c_2} (-1)^{c_2} P(c_2|z_2, \lambda _{4})]\\ & \cdot [\sum \limits _{c_3} (-1)^{c_3} P(c_3|z_3, \lambda _{5})] [\sum \limits _{c_4} (-1)^{c_4} P(c_4|z_4, \lambda _{6})]\\ =& \int \cdots \int \text{d}\lambda _1 \cdots \text{d}\lambda _{6} P_1(\lambda _1) \cdots P_6(\lambda _6) \langle A_{x}\rangle _{\lambda _1, \lambda _2} \langle B_{1,y_1}\rangle _{\lambda _1, \lambda _3, \lambda _4} \langle B_{2,y_2}\rangle _{\lambda _{2}, \lambda _5, \lambda _6} \langle C_{1,z_{1}}\rangle _{\lambda _3} \langle C_{2,z_{2}}\rangle _{\lambda _4} \langle C_{3,z_{3}}\rangle _{\lambda _5} \langle C_{4,z_{4}}\rangle _{\lambda _6}, \end{array} \end{aligned}$$

where

$$\begin{aligned} {\left\{ \begin{array}{ll}&\langle A_{x}\rangle _{\lambda _1, \lambda _2} = \sum \limits _{a} (-1)^{a} P(a|x, \lambda _1, \lambda _2),\\ &\langle B_{1,y_1}\rangle _{\lambda _1, \lambda _3, \lambda _4} = \sum \limits _{b_1} (-1)^{b_1} P(b_1|y_1, \lambda _1, \lambda _3, \lambda _4),\ \langle B_{2,y_2}\rangle _{\lambda _{2}, \lambda _5, \lambda _6} = \sum \limits _{b_2} (-1)^{b_2} P(b_2|y_2, \lambda _2, \lambda _5, \lambda _6),\\ &\langle C_{1,z_{1}}\rangle _{\lambda _3} = \sum \limits _{c_1} (-1)^{c_1} P(c_1|z_1, \lambda _{3}),\ \langle C_{2,z_{2}}\rangle _{\lambda _4} = \sum \limits _{c_2} (-1)^{c_2} P(c_2|z_2, \lambda _{4}),\\ &\langle C_{3,z_{3}}\rangle _{\lambda _5} = \sum \limits _{c_3} (-1)^{c_3} P(c_3|z_3, \lambda _{5}),\ \langle C_{4,z_{4}}\rangle _{\lambda _6} = \sum \limits _{c_4} (-1)^{c_4} P(c_4|z_4, \lambda _{6}).\end{array}\right. } \end{aligned}$$

Then, for any \(j\in \{1,\ldots , 2^{m-1}\}\), one has

$$\begin{aligned} \begin{array}{rl} I_{m,j} =& \langle A_{j} B_{1,j} B_{2,j} [\sum \limits _{z_{1}=1}^m (-1)^{\theta _{z_{1}}^j}C_{1,z_{1}}] [\sum \limits _{z_{2}=1}^m (-1)^{\theta _{z_{2}}^j}C_{2,z_{2}}] [\sum \limits _{z_{3}=1}^m (-1)^{\theta _{z_{3}}^j}C_{3,z_{3}}] [\sum \limits _{z_{4}=1}^m (-1)^{\theta _{z_{4}}^j}C_{4,z_{4}}]\rangle \\ =& \int \cdots \int \text{d}\lambda _1 \cdots \text{d}\lambda _{6} P_1(\lambda _1) \cdots P_6(\lambda _6) \langle A_{j}\rangle _{\lambda _1, \lambda _2} \langle B_{1,j}\rangle _{\lambda _1, \lambda _3, \lambda _4} \langle B_{2,j}\rangle _{\lambda _{2}, \lambda _5, \lambda _6} [\sum \limits _{z_{1}=1}^m (-1)^{\theta _{z_{1}}^j} \langle C_{1,z_{1}}\rangle _{\lambda _3}]\\ & \cdot [\sum \limits _{z_{2}=1}^m (-1)^{\theta _{z_{2}}^j} \langle C_{2,z_{2}}\rangle _{\lambda _4}] [\sum \limits _{z_{3}=1}^m (-1)^{\theta _{z_{3}}^j} \langle C_{3,z_{3}}\rangle _{\lambda _5}] [\sum \limits _{z_{4}=1}^m (-1)^{\theta _{z_{4}}^j} \langle C_{4,z_{4}}\rangle _{\lambda _6}], \end{array} \end{aligned}$$

which implies

$$\begin{aligned} \begin{array}{rl} |I_{m,j}| \le & \int \cdots \int \text{d}\lambda _1 \cdots \text{d}\lambda _{6} P_1(\lambda _1) \cdots P_6(\lambda _6) |\langle A_{j}\rangle _{\lambda _1, \lambda _2}| |\langle B_{1,j}\rangle _{\lambda _1, \lambda _3, \lambda _4}| |\langle B_{2,j}\rangle _{\lambda _{2}, \lambda _5, \lambda _6}| |\sum \limits _{z_{1}=1}^m (-1)^{\theta _{z_{1}}^j} \langle C_{1,z_{1}}\rangle _{\lambda _3}|\\ & \cdot |\sum \limits _{z_{2}=1}^m (-1)^{\theta _{z_{2}}^j} \langle C_{2,z_{2}}\rangle _{\lambda _4}| |\sum \limits _{z_{3}=1}^m (-1)^{\theta _{z_{3}}^j} \langle C_{3,z_{3}}\rangle _{\lambda _5}| |\sum \limits _{z_{4}=1}^m (-1)^{\theta _{z_{4}}^j} \langle C_{4,z_{4}}\rangle _{\lambda _6}|\\ \le & \int \cdots \int \text{d}\lambda _1 \cdots \text{d}\lambda _{6} P_1(\lambda _1) \cdots P_6(\lambda _6) |\sum \limits _{z_{1}=1}^m (-1)^{\theta _{z_{1}}^j} \langle C_{1,z_{1}}\rangle _{\lambda _3}| |\sum \limits _{z_{2}=1}^m (-1)^{\theta _{z_{2}}^j} \langle C_{2,z_{2}}\rangle _{\lambda _4}|\\ & \cdot |\sum \limits _{z_{3}=1}^m (-1)^{\theta _{z_{3}}^j} \langle C_{3,z_{3}}\rangle _{\lambda _5}| |\sum \limits _{z_{4}=1}^m (-1)^{\theta _{z_{4}}^j} \langle C_{4,z_{4}}\rangle _{\lambda _6}|\\ =& [\int \text{d}\lambda _3 P_3(\lambda _3) |\sum \limits _{z_{1}=1}^m (-1)^{\theta _{z_{1}}^j} \langle C_{1,z_{1}}\rangle _{\lambda _3}|] \cdot [\int \text{d}\lambda _{4} P_4(\lambda _4) |\sum \limits _{z_{2}=1}^m (-1)^{\theta _{z_{2}}^j} \langle C_{2,z_{2}}\rangle _{\lambda _4}|]\\ & \cdot [\int \text{d}\lambda _{5} P_5(\lambda _5) |\sum \limits _{z_{3}=1}^m (-1)^{\theta _{z_{3}}^j} \langle C_{3,z_{3}}\rangle _{\lambda _5}|] \cdot [\int \text{d}\lambda _{6} P_6(\lambda _6) |\sum \limits _{z_{4}=1}^m (-1)^{\theta _{z_{4}}^j} \langle C_{4,z_{4}}\rangle _{\lambda _6}|], \end{array} \end{aligned}$$

where the second inequality follows from the facts that \(|\langle A_{j}\rangle _{\lambda _1, \lambda _2}| \le 1\), \(|\langle B_{1,j}\rangle _{\lambda _{1}, \lambda _3, \lambda _4}| \le 1\), \(|\langle B_{2,j}\rangle _{\lambda _{2}, \lambda _5, \lambda _6}| \le 1\). Using inequality \(\sum \limits _{k=1}^s (\prod \limits _{i=1}^t x_{i}^k)^{\frac{1}{t}} \le \prod \limits _{i=1}^t (\sum \limits _{k=1}^s x_{i}^k )^{\frac{1}{t}}\) \((\forall x_{i}^k\ge 0)\) again, we have

$$\begin{aligned} \begin{array}{rl} & \sum \limits _{j=1}^{2^{m-1}} |I_{m,j}|^{\frac{1}{4}}\\ \le & \sum \limits _{j=1}^{2^{m-1}} \{ [\int \text{d}\lambda _3 P_3(\lambda _3) |\sum \limits _{z_{1}=1}^m (-1)^{\theta _{z_{1}}^j} \langle C_{1,z_{1}}\rangle _{\lambda _3}|] \cdot [\int \text{d}\lambda _{4} P_4(\lambda _4) |\sum \limits _{z_{2}=1}^m (-1)^{\theta _{z_{2}}^j} \langle C_{2,z_{2}}\rangle _{\lambda _4}|]\\ & \cdot [\int \text{d}\lambda _{5} P_5(\lambda _5) |\sum \limits _{z_{3}=1}^m (-1)^{\theta _{z_{3}}^j} \langle C_{3,z_{3}}\rangle _{\lambda _5}|] \cdot [\int \text{d}\lambda _{6} P_6(\lambda _6) |\sum \limits _{z_{4}=1}^m (-1)^{\theta _{z_{4}}^j} \langle C_{4,z_{4}}\rangle _{\lambda _6}|] \}^{\frac{1}{4}}\\ \le & [\int \text{d}\lambda _3 P_3(\lambda _3) \sum \limits _{j=1}^{2^{m-1}} |\sum \limits _{z_{1}=1}^m (-1)^{\theta _{z_{1}}^j} \langle C_{1,z_{1}}\rangle _{\lambda _3}|] ^{\frac{1}{4}} \cdot [\int \text{d}\lambda _{4} P_4(\lambda _4) \sum \limits _{j=1}^{2^{m-1}} |\sum \limits _{z_{2}=1}^m (-1)^{\theta _{z_{2}}^j} \langle C_{2,z_{2}}\rangle _{\lambda _4}|] ^{\frac{1}{4}}\\ & \cdot [\int \text{d}\lambda _{5} P_5(\lambda _5) \sum \limits _{j=1}^{2^{m-1}} |\sum \limits _{z_{3}=1}^m (-1)^{\theta _{z_{3}}^j} \langle C_{3,z_{3}}\rangle _{\lambda _5}|] ^{\frac{1}{4}} \cdot [\int \text{d}\lambda _{6} P_6(\lambda _6) \sum \limits _{j=1}^{2^{m-1}} |\sum \limits _{z_{4}=1}^m (-1)^{\theta _{z_{4}}^j} \langle C_{4,z_{4}}\rangle _{\lambda _6}|] ^{\frac{1}{4}}\\ =& \sum \limits _{i=0}^{[ \frac{m}{2}]} (m-2i) \text{C}^i_m, \end{array} \end{aligned}$$

where the last equality is owing to

$$\begin{aligned} \begin{array}{rl}&\sum \limits _{j=1}^{2^{m-1}} |\sum \limits _{z_{1}=1}^m (-1)^{\theta _{z_{1}}^j} \langle C_{1,z_{1}}\rangle _{\lambda _3}| = \sum \limits _{j=1}^{2^{m-1}} |\sum \limits _{z_{2}=1}^m (-1)^{\theta _{z_{2}}^j} \langle C_{2,z_{2}}\rangle _{\lambda _4}|\\ =& \sum \limits _{j=1}^{2^{m-1}} |\sum \limits _{z_{3}=1}^m (-1)^{\theta _{z_{3}}^j} \langle C_{3,z_{3}}\rangle _{\lambda _5}| = \sum \limits _{j=1}^{2^{m-1}} |\sum \limits _{z_{4}=1}^m (-1)^{\theta _{z_{4}}^j} \langle C_{4,z_{4}}\rangle _{\lambda _6}| = \sum \limits _{i=0}^{[ \frac{m}{2}]}(m-2i) \text{C}^i_m.\end{array} \end{aligned}$$

Thus we complete the proof. \(\hfill\square\)

Proof of Inequality (12).

Consider the case of pure state, i.e.,

$$\begin{aligned} \rho = |\psi \rangle \langle \psi |\ \ \text{with}\ \ |\psi \rangle = |\psi \rangle _{AB_1} \otimes |\psi \rangle _{AB_2} \otimes |\psi \rangle _{B_1C_1} \otimes |\psi \rangle _{B_1C_2} \otimes |\psi \rangle _{B_2C_3} \otimes |\psi \rangle _{B_2C_4}. \end{aligned}$$

From the definition, we have

$$\begin{aligned} & \sum \limits _{j=1}^{2^{m-1}} |I_{m,j}|^{\frac{1}{4}}\\ =& \sum \limits _{j=1}^{2^{m-1}} |\langle A_{j}\otimes B_{1,j}\otimes B_{2,j}\otimes \left[\sum \limits _{z_{1}=1}^m (-1)^{\theta _{z_{1}}^j}C_{1,z_{1}}\right]\otimes \left[\sum \limits _{z_{2}=1}^m (-1)^{\theta _{z_{2}}^j}C_{2,z_{2}}\right]\otimes \left[\sum \limits _{z_{3}=1}^m (-1)^{\theta _{z_{3}}^j}C_{3,z_{3}}\right]\otimes \left[\sum \limits _{z_{4}=1}^m (-1)^{\theta _{z_{4}}^j}C_{4,z_{4}}\right]\rangle |^{\frac{1}{4}}\\ =& \sum \limits _{j=1}^{2^{m-1}} |\text{Tr}\left\{[A_{j}\otimes B_{1,j}\otimes B_{2,j}\otimes \left[\sum \limits _{z_{1}=1}^m (-1)^{\theta _{z_{1}}^j}C_{1,z_{1}}\right]\otimes \left[\sum \limits _{z_{2}=1}^m (-1)^{\theta _{z_{2}}^j}C_{2,z_{2}}\right]\otimes \left[\sum \limits _{z_{3}=1}^m (-1)^{\theta _{z_{3}}^j}C_{3,z_{3}}\right]\right.\\ &\left. \otimes \left[\sum \limits _{z_{4}=1}^m (-1)^{\theta _{z_{4}}^j}C_{4,z_{4}}\right]]|\psi \rangle \langle \psi |\right\} |^{\frac{1}{4}}\\ =& \sum \limits _{j=1}^{2^{m-1}} |\langle \psi | \left\{A_{j}\otimes B_{1,j}\otimes B_{2,j}\otimes \left[\sum \limits _{z_{1}=1}^m (-1)^{\theta _{z_{1}}^j}C_{1,z_{1}}\right]\otimes \left[\sum \limits _{z_{2}=1}^m (-1)^{\theta _{z_{2}}^j}C_{2,z_{2}}\right]\otimes \left[\sum \limits _{z_{3}=1}^m (-1)^{\theta _{z_{3}}^j}C_{3,z_{3}}\right]\right.\\ &\left. \otimes \left[\sum \limits _{z_{4}=1}^m (-1)^{\theta _{z_{4}}^j}C_{4,z_{4}}\right]\right\}|\psi \rangle |^{\frac{1}{4}}\\ =& \sum \limits _{j=1}^{2^{m-1}} |\langle \psi | (A_{j}\otimes B_{1,j}\otimes B_{2,j} \otimes I^{C_1} \otimes I^{C_2} \otimes I^{C_3} \otimes I^{C_4})\\ & \cdot \{ I^{A} \otimes I^{B_1}\otimes I^{B_2} \otimes \left[\sum \limits _{z_{1}=1}^m (-1)^{\theta _{z_{1}}^j}C_{1,z_{1}}\right]\otimes \left[\sum \limits _{z_{2}=1}^m (-1)^{\theta _{z_{2}}^j}C_{2,z_{2}}\right]\otimes \left[\sum \limits _{z_{3}=1}^m (-1)^{\theta _{z_{3}}^j}C_{3,z_{3}}\right]\otimes \left[\sum \limits _{z_{4}=1}^m (-1)^{\theta _{z_{4}}^j}C_{4,z_{4}}\right]\}|\psi \rangle |^{\frac{1}{4}}\\ \le & \sum \limits _{j=1}^{2^{m-1}} [\langle \psi | (A_{j}\otimes B_{1,j}\otimes B_{2,j} \otimes I^{C_1} \otimes I^{C_2} \otimes I^{C_3} \otimes I^{C_4})^2 |\psi \rangle ]^{\frac{1}{8}}\\ & \cdot (\langle \psi | \{I^{A} \otimes I^{B_1}\otimes I^{B_2} \otimes \left[\sum \limits _{z_{1}=1}^m (-1)^{\theta _{z_{1}}^j}C_{1,z_{1}}\right]\otimes \left[\sum \limits _{z_{2}=1}^m (-1)^{\theta _{z_{2}}^j}C_{2,z_{2}}\right]\otimes \left[\sum \limits _{z_{3}=1}^m (-1)^{\theta _{z_{3}}^j}C_{3,z_{3}}\right]\\ & \otimes \left[\sum \limits _{z_{4}=1}^m (-1)^{\theta _{z_{4}}^j}C_{4,z_{4}}\right]\}^2 |\psi \rangle )^{\frac{1}{8}}\\ =& \sum \limits _{j=1}^{2^{m-1}} (\langle \psi | \{I^{A} \otimes I^{B_1}\otimes I^{B_2} \otimes \left[\sum \limits _{z_{1}=1}^m (-1)^{\theta _{z_{1}}^j}C_{1,z_{1}}\right]\otimes \left[\sum \limits _{z_{2}=1}^m (-1)^{\theta _{z_{2}}^j}C_{2,z_{2}}\right]\otimes \left[\sum \limits _{z_{3}=1}^m (-1)^{\theta _{z_{3}}^j}C_{3,z_{3}}\right]\\ & \otimes \left[\sum \limits _{z_{4}=1}^m (-1)^{\theta _{z_{4}}^j}C_{4,z_{4}}\right]\}^2 |\psi \rangle )^{\frac{1}{8}}\\ =& \sum \limits _{j=1}^{2^{m-1}} (\langle \psi | \left\{I^{A} \otimes I^{B_1}\otimes I^{B_2} \otimes \left[\sum \limits _{z_{1}=1}^m (-1)^{\theta _{z_{1}}^j}C_{1,z_{1}}\right]^2\otimes \left[\sum \limits _{z_{2}=1}^m (-1)^{\theta _{z_{2}}^j}C_{2,z_{2}}\right]^2\otimes \left[\sum \limits _{z_{3}=1}^m (-1)^{\theta _{z_{3}}^j}C_{3,z_{3}}\right]^2\right. \\ &\left. \otimes \left[\sum \limits _{z_{4}=1}^m (-1)^{\theta _{z_{4}}^j}C_{4,z_{4}}\right]^2\right\} |\psi \rangle )^{\frac{1}{8}}, \end{aligned}$$

where the above inequality is due to Cauchy-Schwarz inequality and the fifth equality follows from the fact \(A_{j}^2= B_{1,j}^2= B_{2,j}^2= I\) for \(j=1,\ldots ,2^{m-1}\). Note that, for any \(j\in \{1,\ldots , 2^{m-1}\}\), one has

$$\begin{aligned} & \left\langle \psi \left| \left\{I^{A} \otimes I^{B_{1}} \otimes I^{B_{2}} \otimes \left[\sum \limits _{z_{1}=1}^m (-1)^{\theta _{z_{1}}^j}C_{1,z_{1}}\right]^2\otimes \left[\sum \limits _{z_{2}=1}^m (-1)^{\theta _{z_{2}}^j}C_{2,z_{2}}\right]^2\otimes \left[\sum \limits _{z_{3}=1}^m (-1)^{\theta _{z_{3}}^j}C_{3,z_{3}}\right]^2 \otimes \left[\sum \limits _{z_{4}=1}^m (-1)^{\theta _{z_{4}}^j}C_{4,z_{4}}\right]^2\right\} \right|\psi \right\rangle \\ &\quad = \langle \psi |_{B_1C_1} \left[\sum \limits _{z_{1}=1}^m (-1)^{\theta _{z_{1}}^j}C_{1,z_{1}}\right]^2 |\psi \rangle _{B_1C_1} \cdot \langle \psi |_{B_1C_2} \left[\sum \limits _{z_{2}=1}^m (-1)^{\theta _{z_{2}}^j}C_{2,z_{2}}\right]^2 |\psi \rangle _{B_1C_2}\\ &\qquad \cdot \langle \psi |_{B_2C_3} \left[\sum \limits _{z_{3}=1}^m (-1)^{\theta _{z_{3}}^j}C_{3,z_{3}}\right]^2 |\psi \rangle _{B_2C_3} \cdot \langle \psi |_{B_2C_4} \left[\sum \limits _{z_{4}=1}^m (-1)^{\theta _{z_{4}}^j}C_{4,z_{4}}\right]^2 |\psi \rangle _{B_2C_4}\\ &\quad = \Vert \left[\sum \limits _{z_{1}=1}^m (-1)^{\theta _{z_{1}}^j}C_{1,z_{1}}\right] |\psi \rangle _{B_1C_1}\Vert ^2 \cdot \Vert \left[\sum \limits _{z_{2}=1}^m (-1)^{\theta _{z_{2}}^j}C_{2,z_{2}}\right] |\psi \rangle _{B_1C_2}\Vert ^2\\ &\qquad \cdot \Vert \left[\sum \limits _{z_{3}=1}^m (-1)^{\theta _{z_{3}}^j}C_{3,z_{3}}\right] |\psi \rangle _{B_2C_3}\Vert ^2 \cdot \Vert \left[\sum \limits _{z_{4}=1}^m (-1)^{\theta _{z_{4}}^j}C_{4,z_{4}}\right] |\psi \rangle _{B_2C_4}\Vert ^2\\ &\quad = (\omega _{m,j}^1)^2 \cdot (\omega _{m,j}^2)^2 \cdot (\omega _{m,j}^3)^2 \cdot (\omega _{m,j}^4)^2, \end{aligned}$$

where

$$\begin{aligned} \omega _{m,j}^1= & \Vert \left[\sum \limits _{z_{1}=1}^m (-1)^{\theta _{z_{1}}^j}C_{1,z_{1}}\right] |\psi \rangle _{B_1C_1} \Vert ,\ \ \ \ \omega _{m,j}^2= \Vert \left[\sum \limits _{z_{2}=1}^m (-1)^{\theta _{z_{2}}^j}C_{2,z_{2}}\right] |\psi \rangle _{B_1C_2} \Vert ,\\ \omega _{m,j}^3= & \Vert \left[\sum \limits _{z_{3}=1}^m (-1)^{\theta _{z_{3}}^j}C_{3,z_{3}}\right] |\psi \rangle _{B_2C_3} \Vert ,\ \ \ \ \omega _{m,j}^4= \Vert \left[\sum \limits _{z_{4}=1}^m (-1)^{\theta _{z_{4}}^j}C_{4,z_{4}}\right] |\psi \rangle _{B_2C_4} \Vert . \end{aligned}$$

So

$$\begin{aligned} \begin{array}{rl} \sum \limits _{j=1}^{2^{m-1}} |I_{m,j}|^{\frac{1}{4}} \le & \sum \limits _{j=1}^{2^{m-1}} \left[(\omega _{m,j}^1)^2 \cdot (\omega _{m,j}^2)^2 \cdot (\omega _{m,j}^3)^2 \cdot (\omega _{m,j}^4)^2\right]^{\frac{1}{8}}\\ =& \sum \limits _{j=1}^{2^{m-1}} \left[(\omega _{m,j}^1) \cdot (\omega _{m,j}^2) \cdot (\omega _{m,j}^3) \cdot (\omega _{m,j}^4)\right]^{\frac{1}{4}}\\ \le & \left[\sum \limits _{j=1}^{2^{m-1}} (\omega _{m,j}^1)\right]^{\frac{1}{4}} \cdot \left[\sum \limits _{j=1}^{2^{m-1}} (\omega _{m,j}^2)\right]^{\frac{1}{4}} \cdot \left[\sum \limits _{j=1}^{2^{m-1}} (\omega _{m,j}^3)\right]^{\frac{1}{4}} \cdot \left[\sum \limits _{j=1}^{2^{m-1}} (\omega _{m,j}^4)\right]^{\frac{1}{4}}\\ \le & 2^{m-1} \sqrt{m}, \end{array} \end{aligned}$$

where the last inequality is due to \(\sum \limits _{j=1}^{2^{m-1}} (\omega _{m,j}^i)\le 2^{m-1}\sqrt{m}\) \((i=1,2,3,4)\). Hence \((\sum \limits _{j=1}^{2^{m-1}} |I_{m,j}|^{\frac{1}{4}})_Q\le 2^{m-1} \sqrt{m}\), as desired. \(\hfill\square\)

Proof of Theorem 4

Assume \(\rho _{AB_1}\), \(\rho _{AB_2}\), \(\rho _{B_1C_1}\), \(\rho _{B_1C_2}\), \(\rho _{B_2C_3}\), \(\rho _{B_2C_4}\) have the forms as in the proof of Theorem 2. Then, for any \(j\in \{1, \ldots ,2^{m-1}\}\), we have

$$\begin{aligned} \begin{array}{rl} I_{m,j}=& \langle A_{j}B_{1,j} B_{2,j} \left[\sum \limits _{z_{1}=1}^m (-1)^{\theta _{z_{1}}^j}C_{1,z_{1}}\right] \left[\sum \limits _{z_{2}=1}^m (-1)^{\theta _{z_{2}}^j}C_{2,z_{2}}\right] \left[\sum \limits _{z_{3}=1}^m (-1)^{\theta _{z_{3}}^j}C_{3,z_{3}}\right] \left[\sum \limits _{z_{4}=1}^m (-1)^{\theta _{z_{4}}^j}C_{4,z_{4}}\right]\rangle \\ =& \sum \limits _u p_u^{AB_1} \sum \limits _v p_v^{AB_2} \sum \limits _w p_w^{B_1C_1}\sum \limits _r p_r^{B_1C_2}\sum \limits _s p_s^{B_2C_3}\sum \limits _t p_t^{B_2C_4} \Bigg\{{\rm Tr}[A_{j}(\rho _u^A\otimes \rho _v^A)]\\& \cdot {\rm Tr}[B_{1,j}(\rho _u^{B_1}\otimes \rho _w^{B_1}\otimes \rho _r^{B_1})] \cdot {\rm Tr}[B_{2,j}(\rho _v^{B_2}\otimes \rho _s^{B_2}\otimes \rho _t^{B_2})] \cdot {\rm Tr}\left\{\left[\sum \limits _{z_{1}=1}^m (-1)^{\theta _{z_{1}}^j}C_{1,z_{1}}\right](\rho _w^{C_1})\right\}\\ & \cdot {\rm Tr}\left\{\left[\sum \limits _{z_{2}=1}^m (-1)^{\theta _{z_{2}}^j}C_{2,z_{2}}\right](\rho _r^{C_2})\right\} \cdot {\rm Tr}\left\{\left[\sum \limits _{z_{3}=1}^m (-1)^{\theta _{z_{3}}^j}C_{3,z_{3}}\right](\rho _s^{C_3})\right\} \cdot {\rm Tr}\left\{\left[\sum \limits _{z_{4}=1}^m (-1)^{\theta _{z_{4}}^j}C_{4,z_{4}}\right](\rho _t^{C_4})\right\}\Bigg\}, \end{array}\end{aligned}$$

which implies

$$\begin{aligned} \begin{array}{rl} |I_{m,j}|\le & \sum \limits _u p_u^{AB_1} \sum \limits _v p_v^{AB_2} \sum \limits _w p_w^{B_1C_1} \sum \limits _r p_r^{B_1C_2}\sum \limits _s p_s^{B_2C_3}\sum \limits _t p_t^{B_2C_4} \Bigg\{|{\rm Tr}[A_{j}(\rho _u^A\otimes \rho _v^A)]|\\ & \cdot |{\rm Tr}[B_{1,j}(\rho _u^{B_1}\otimes \rho _w^{B_1}\otimes \rho _r^{B_1})]| \cdot |{\rm Tr}[B_{2,j}(\rho _v^{B_2}\otimes \rho _s^{B_2}\otimes \rho _t^{B_2})]| \cdot |{\rm Tr}\left\{\left[\sum \limits _{z_{1}=1}^m (-1)^{\theta _{z_{1}}^j}C_{1,z_{1}}\right](\rho _w^{C_1})\right\}|\\ &\cdot |{\rm Tr}\left\{\left[\sum \limits _{z_{2}=1}^m (-1)^{\theta _{z_{2}}^j}C_{2,z_{2}}\right](\rho _r^{C_2})\right\}| \cdot |{\rm Tr}\left\{\left[\sum \limits _{z_{3}=1}^m (-1)^{\theta _{z_{3}}^j}C_{3,z_{3}}\right](\rho _s^{C_3})\right\}| \cdot |{\rm Tr}\left\{\left[\sum \limits _{z_{4}=1}^m (-1)^{\theta _{z_{4}}^j}C_{4,z_{4}}\right](\rho _t^{C_4})\right\}|\Bigg\}\\ \le & \sum \limits _u p_u^{AB_1} \sum \limits _v p_v^{AB_2} \sum \limits _w p_w^{B_1C_1} \sum \limits _r p_r^{B_1C_2}\sum \limits _s p_s^{B_2C_3}\sum \limits _t p_t^{B_2C_4}\\ &\Bigg\{|{\rm Tr}\left\{\left[\sum \limits _{z_{1}=1}^m (-1)^{\theta _{z_{1}}^j}C_{1,z_{1}}\right](\rho _w^{C_1})\right\}| \cdot |{\rm Tr}\left\{\left[\sum \limits _{z_{2}=1}^m (-1)^{\theta _{z_{2}}^j}C_{2,z_{2}}\right](\rho _r^{C_2})\right\}|\\ & \cdot |{\rm Tr}\left\{\left[\sum \limits _{z_{3}=1}^m (-1)^{\theta _{z_{3}}^j}C_{3,z_{3}}\right](\rho _s^{C_3})\right\}| \cdot |{\rm Tr}\left\{\left[\sum \limits _{z_{4}=1}^m (-1)^{\theta _{z_{4}}^j}C_{4,z_{4}}\right](\rho _t^{C_4})\right\}|\Bigg\}\\ =& \left\{\sum \limits _w p_w^{B_1C_1} |{\rm Tr}\left\{\left[\sum \limits _{z_{1}=1}^m (-1)^{\theta _{z_{1}}^j}C_{1,z_{1}}\right](\rho _w^{C_1})\right\}|\right\} \cdot \left\{\sum \limits _r p_r^{B_1C_2} |{\rm Tr}\left\{\left[\sum \limits _{z_{2}=1}^m (-1)^{\theta _{z_{2}}^j}C_{2,z_{2}}\right](\rho _r^{C_2})\right\}|\right\}\\ & \cdot \left\{\sum \limits _s p_s^{B_2C_3}|{\rm Tr}\left\{\left[\sum \limits _{z_{3}=1}^m (-1)^{\theta _{z_{3}}^j}C_{3,z_{3}}\right](\rho _s^{C_3})\right\}|\right\} \cdot \left\{\sum \limits _t p_t^{B_2C_4} |{\rm Tr}\left\{\left[\sum \limits _{z_{4}=1}^m (-1)^{\theta _{z_{4}}^j}C_{4,z_{4}}\right](\rho _t^{C_4})\right\}|\right\}.\end{array} \end{aligned}$$

By inequality \(\sum \limits _{k=1}^s (\prod \limits _{i=1}^t x_{i}^k)^{\frac{1}{t}} \le \prod \limits _{i=1}^t (\sum \limits _{k=1}^s x_{i}^k )^{\frac{1}{t}}\) \((\forall x_i^k \ge 0)\), we can obtain that

$$\begin{aligned} \begin{array}{rl} &\sum \limits _{j=1}^{2^{m-1}}|I_{m,j}|^{\frac{1}{4}}\\ \le & \left\{\sum \limits _{j=1}^{2^{m-1}}\sum \limits _w p_w^{B_1C_1} |{\rm Tr}\left\{\left[\sum \limits _{z_{1}=1}^m (-1)^{\theta _{z_{1}}^j}C_{1,z_{1}}\right](\rho _w^{C_1})\right\}|\right\}^{\frac{1}{4}} \cdot \left\{\sum \limits _{j=1}^{2^{m-1}}\sum \limits _r p_r^{B_1C_2} |{\rm Tr}\left\{\left[\sum \limits _{z_{2}=1}^m (-1)^{\theta _{z_{2}}^j}C_{2,z_{2}}\right](\rho _r^{C_2})\right\}|\right\}^{\frac{1}{4}}\\ & \cdot \left\{\sum \limits _{j=1}^{2^{m-1}}\sum \limits _s p_s^{B_2C_3} |{\rm Tr}\left\{\left[\sum \limits _{z_{3}=1}^m (-1)^{\theta _{z_{3}}^j}C_{3,z_{3}}\right](\rho _s^{C_3})\right\}|\right\}^{\frac{1}{4}} \cdot \left\{\sum \limits _{j=1}^{2^{m-1}}\sum \limits _t p_t^{B_2C_4} |{\rm Tr}\left\{\left[\sum \limits _{z_{4}=1}^m (-1)^{\theta _{z_{4}}^j}C_{4,z_{4}}\right](\rho _t^{C_4})\right\}|\right\}^{\frac{1}{4}}. \end{array} \end{aligned}$$

For the first term in the above expression, we have

$$\begin{aligned} \begin{array}{rl} &\sum \limits _{j=1}^{2^{m-1}}\sum \limits _w p_w^{B_1C_1} |{\rm Tr}\left\{\left[\sum \limits _{z_{1}=1}^m (-1)^{\theta _{z_{1}}^j}C_{1,z_{1}}\right](\rho _w^{C_1})\right\}|\\ =& \sum \limits _w p_w^{B_1C_1}\sum \limits _{j=1}^{2^{m-1}} |{\rm Tr}\left\{\left[\sum \limits _{z_{1}=1}^m (-1)^{\theta _{z_{1}}^j}C_{1,z_{1}}\right](\rho _w^{C_1})\right\}|\\ =& \sum \limits _w p_w^{B_1C_1} \left[\sum \limits _{i=0}^{\left[ \frac{m}{2}\right]}(m-2i) \text{C}^i_m\right]= \sum \limits _{i=0}^{\left[ \frac{m}{2}\right]}(m-2i) \text{C}^i_m. \end{array} \end{aligned}$$

Similarly, we have

$$\begin{aligned} & \sum \limits _{j=1}^{2^{m-1}}\sum \limits _r p_r^{B_1C_2} |{\rm Tr}\left\{\left[\sum \limits _{z_{2}=1}^m (-1)^{\theta _{z_{2}}^j}C_{2,z_{2}}\right](\rho _r^{C_2})\right\}|= \sum \limits _{i=0}^{\left[ \frac{m}{2}\right]}(m-2i) \text{C}^i_m,\\ & \sum \limits _{j=1}^{2^{m-1}}\sum \limits _s p_s^{B_2C_3} |{\rm Tr}\left\{\left[\sum \limits _{z_{3}=1}^m (-1)^{\theta _{z_{3}}^j}C_{3,z_{3}}\right](\rho _s^{C_3})\right\}|= \sum \limits _{i=0}^{\left[ \frac{m}{2}\right]}(m-2i) \text{C}^i_m,\\ & \sum \limits _{j=1}^{2^{m-1}}\sum \limits _t p_t^{B_2C_4} |{\rm Tr}\left\{\left[\sum \limits _{z_{4}=1}^m (-1)^{\theta _{z_{4}}^j}C_{4,z_{4}}\right](\rho _t^{C_4})\right\}|= \sum \limits _{i=0}^{\left[ \frac{m}{2}\right]}(m-2i) \text{C}^i_m. \end{aligned}$$

Therefore, \(\sum \limits _{j=1}^{2^{m-1}}|I_{m,j}|^{\frac{1}{4}}\le \sum \limits _{i=0}^{[ \frac{m}{2}]}(m-2i) \text{C}^i_m\). \(\hfill\square\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Qi, X. & Hou, J. Generalized n-locality correlations in tree tensor network configuration. Eur. Phys. J. Plus 138, 772 (2023). https://doi.org/10.1140/epjp/s13360-023-04356-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04356-9

Navigation